DiffRect: Latent Diffusion Label Rectification for Semi-supervised Medical Image Segmentation

被引:1
作者
Liu, Xinyu [1 ]
Li, Wuyang [1 ]
Yuan, Yixuan [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT XII | 2024年 / 15012卷
关键词
Semi-supervised; Medical Image Segmentation; Diffusion Models; Label Rectification;
D O I
10.1007/978-3-031-72390-2_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised medical image segmentation aims to leverage limited annotated data and rich unlabeled data to perform accurate segmentation. However, existing semi-supervised methods are highly dependent on the quality of self-generated pseudo labels, which are prone to incorrect supervision and confirmation bias. Meanwhile, they are insufficient in capturing the label distributions in latent space and suffer from limited generalization to unlabeled data. To address these issues, we propose a Latent Diffusion Label Rectification Model (DiffRect) for semi-supervised medical image segmentation. DiffRect first utilizes a Label Context Calibration Module (LCC) to calibrate the biased relationship between classes by learning the category-wise correlation in pseudo labels, then apply Latent Feature Rectification Module (LFR) on the latent space to formulate and align the pseudo label distributions of different levels via latent diffusion. It utilizes a denoising network to learn the coarse to fine and fine to precise consecutive distribution transportations. We evaluate DiffRect on three public datasets: ACDC, MS-CMRSEG 2019, and Decathlon Prostate. Experimental results demonstrate the effectiveness of DiffRect, e.g. it achieves 82.40% Dice score on ACDC with only 1% labeled scan available, outperforms the previous state-of-the-art by 4.60% in Dice, and even rivals fully supervised performance. Code is released at https://github.com/CUHK-AIM-Group/DiffRect.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 43 条
[1]  
[Anonymous], 2020, NeurIPS
[2]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[3]   Generative Semantic Segmentation [J].
Chen, Jiaqi ;
Lu, Jiachen ;
Zhu, Xiatian ;
Zhang, Li .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, :7111-7120
[4]   Multi-task Attention-Based Semi-supervised Learning for Medical Image Segmentation [J].
Chen, Shuai ;
Bortsova, Gerda ;
Juarez, Antonio Garcia-Uceda ;
van Tulder, Gijs ;
de Bruijne, Marleen .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :457-465
[5]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[6]   ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models [J].
Choi, Jooyoung ;
Kim, Sungwon ;
Jeong, Yonghyun ;
Gwon, Youngjune ;
Yoon, Sungroh .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :14347-14356
[7]  
Feng Z., 2020, arXiv preprint arXiv:2004.08514, V5
[8]  
Ho J., 2020, Advances in Neural Information Processing Systems, V33, P6840
[9]  
Hu HZ, 2021, ADV NEUR IN, V34
[10]  
Jiao RS, 2022, Arxiv, DOI arXiv:2207.14191