Rogue wave patterns in the nonlocal nonlinear Schrodinger equation

被引:3
作者
Zhang, Guangxiong [1 ]
Wu, Chengfa [1 ,2 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Sch Math Sci, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
RATIONAL SOLUTIONS; SOLITONS; 2ND;
D O I
10.1063/5.0232496
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper investigates rogue wave patterns in the nonlocal nonlinear Schrodinger (NLS) equation. Initially, employing the Kadomtsev- Petviashvili reduction method, rogue wave solutions of the nonlocal NLS equation, whose s function is a 2 x 2 block matrix, are simplified. Afterward, utilizing the asymptotic analysis approach, we investigate the rogue wave patterns when two free parameters a(2m1+1) and b(2m2+1) are considerably large and fulfill the condition |a(2m1+1)|(2/(2m1+1)) = O(|b(2m2+1)|(1/(2m2+1)). Our findings reveal that under these conditions, rogue wave solutions of the nonlocal NLS equation exhibit novel patterns, which consist of three regions, which are the outer region, the middle region and the inner region. In the outer and middle regions, only single rogue waves with singularities may occur, and their locations are characterized by roots of two polynomials from the Yablonskii-Vorob'ev polynomial hierarchies. In the inner region, a possible lower order rogue wave may appear, which can be singular or regular, depending on the values of m1; m2, the sizes of s function, and certain free parameters. Finally, the numerical results indicate that the predicted outcomes are in close alignment with real rogue waves.
引用
收藏
页数:15
相关论文
共 66 条
[1]  
Ablowitz M.J., 1981, SOLITONS INVERSE SCA, V4, DOI DOI 10.1137/1.9781611970883
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]   SOLITONS AND RATIONAL SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS [J].
ABLOWITZ, MJ ;
SATSUMA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2180-2186
[4]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[5]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[6]   Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime [J].
Baronio, Fabio ;
Conforti, Matteo ;
Degasperis, Antonio ;
Lombardo, Sara ;
Onorato, Miguel ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[7]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[8]   Observation of a hierarchy of up to fifth-order rogue waves in a water tank [J].
Chabchoub, A. ;
Hoffmann, N. ;
Onorato, M. ;
Slunyaev, A. ;
Sergeeva, A. ;
Pelinovsky, E. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2012, 86 (05)
[9]   Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves [J].
Chabchoub, A. ;
Hoffmann, N. ;
Onorato, M. ;
Akhmediev, N. .
PHYSICAL REVIEW X, 2012, 2 (01)
[10]   Rogue Wave Observation in a Water Wave Tank [J].
Chabchoub, A. ;
Hoffmann, N. P. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)