Defects-rich Ru-doped black TiO2 nanotube arrays for photoelectrochemical levofloxacin degradation coupled with simultaneous cathodic H2 production

被引:0
作者
Gao, Hui [1 ]
Zhu, Lebing [1 ]
Zhang, Guoquan [1 ]
Xu, Xiaochen [1 ]
Yang, Fenglin [1 ]
机构
[1] Dalian Univ Technol, Sch Environm Sci & Technol, Key Lab Ind Ecol & Environm Engn, Minist Educ, Linggong Rd 2, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO 2 nanotube arrays; Photoelectrocatalytic; Hydrogen production; Levofloxacin; Defects-rich; OXYGEN VACANCIES; EVOLUTION; PERFORMANCE; PHOTOANODE; ELECTRODE; TI3+;
D O I
10.1016/j.jcis.2025.02.183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As an emerging and promising technology, the bifunctional photoelectrocatalytic (PEC) systems have shown remarkable potential in treating wastewater and producing energy. A central critical challenge in this field is the development of high-performance electrode materials that exhibit superior PEC properties. In this work, the defect-rich Ru-doped black TiO2 nanotube arrays (Ru-BTNAs) bifunctional electrodes were engineered and utilized in a PEC system, aiming to achieve efficient antibiotics levofloxacin degradation and hydrogen production simultaneously. In-depth characterization characterizations and the Density functional theory (DFT) calculations reveal that the synergistic effect between Ti3+-oxygen vacancies (Ovs) defects and Ru doping significantly improves light absorption, accelerates the separation and transmission of photoexcited e--h+ pairs, and optimizes PEC performance. The coupled photocatalytic and electrocatalytic processes enhance the generation of h+, 1O2, HO center dot, and SO4 center dot- radicals, which effectively degrade levofloxacin. The abundant Ovs facilitate electron transfer from BTNAs to Ru, accelerating hydrogen evolution reaction (HER) on electron-rich Ru at a low overpotential. This work provides a theoretical framework for designing bifunctional electrode to achieve the energy-efficient hydrogen production from antibiotics-contaminated wastewater.
引用
收藏
页码:677 / 687
页数:11
相关论文
共 58 条
[21]  
Gu F., Di M., Han D., Hong S., Wang Z., Atomically dispersed Au on In<sub>2</sub>O<sub>3</sub> nanosheets for highly sensitive and selective detection of formaldehyde, ACS Sensors, 5, pp. 2611-2619, (2020)
[22]  
Tian F., Zhang Y., Zhang J., Pan C., Raman spectroscopy: A new approach to measure the percentage of anatase TiO<sub>2</sub> exposed (001) Facets, J. Phys. Chem. C, 116, pp. 7515-7519, (2012)
[23]  
Song Q., Zhang S., Hou X., Li J., Yang L., Liu X., Li M., Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO<sub>2</sub> nanotube array by highly dispersed trace Cu doping, J. Hazard. Mater., 438, (2022)
[24]  
Zhang Y., Ding Z., Foster C.W., Banks C.E., Qiu X., Ji X., Oxygen vacancies evoked blue TiO<sub>2</sub>(B) nanobelts with efficiency enhancement in sodium storage behaviors, Adv. Funct. Mater., 27, (2017)
[25]  
Rajput H., Changotra R., Kumar Sangal V., Dhir A., Photoelectrocatalytic treatment of recalcitrant compounds and bleach stage pulp and paper mill effluent using Au-TiO<sub>2</sub> nanotube electrode, Chem. Eng. J., 408, (2021)
[26]  
Zhang G., Zhao L., Hu X., Zhu X., Yang F., Synergistic activation of sulfate by TiO<sub>2</sub> nanotube arrays-based electrodes for berberine degradation: Insight into pH-dependant ORR-strengthened reactive radicals co-generation mechanism, Appl. Catal. b: Environ., 313, (2022)
[27]  
Wang Y., Huang L., Zhang T.C., Wang Y., Yuan S., Visible-light-induced photocatalytic oxidation of gaseous ammonia on Mo, C-codoped TiO<sub>2</sub>: Synthesis, performance and mechanism, Chem. Eng. J., 482, (2024)
[28]  
Yang Y., Gao P., Ren X., Sha L., Yang P., Zhang J., Chen Y., Yang L., Massive Ti<sup>3+</sup> self-doped by the injected electrons from external Pt and the efficient photocatalytic hydrogen production under visible-Light, Appl. Catal. b: Environ., 218, pp. 751-757, (2017)
[29]  
Placa L.F., Vital P.-L.-S., Gomes L.E., Roveda A.C., Cardoso D.R., Martins C.A., Wender H., Black TiO<sub>2</sub> photoanodes for direct methanol photo fuel cells, ACS Appl. Mater. Interf., 15, pp. 43259-43271, (2022)
[30]  
Wu K., Xiong J., Sun Y., Wu J., Fu M., Ye D., Tuning the local electronic structure of SrTiO<sub>3</sub> catalysts to boost plasma-catalytic interfacial synergy, J. Hazard. Mater., 428, (2022)