Autoencoder-based Metamodeling for Structural Design Optimization

被引:0
作者
Schneider, Fabian [1 ]
Hellmig, Ralph J. [2 ]
Nelles, Oliver [1 ]
机构
[1] Univ Siegen, Inst Mech & Control Engn Mech, Siegen, Germany
[2] Univ Siegen, Inst Mat Sci, Siegen, Germany
关键词
Metamodeling; Autoencoder; Computer Experiments; Design of Experiments;
D O I
10.1016/j.ifacol.2025.01.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Metamodel-assisted optimization is a frequently applied approach for structural design optimization problems. Here, a data-driven metamodel approximates the computationally expensive simulation results of first principle models, e.g., finite element analyses. A significant drawback of typical metamodels is the limited amount of information that can be predicted due to their generally low-dimensional model output. Consequently, the metamodel usually does not predict the distribution of the desired quantity. This work presents a metamodel approach capable of predicting the spatial and temporal distribution of quantities for structural processes. This increases the modeling capability and makes more information available for the optimization. The autoencoder compresses the spatial distribution into a couple of features. The proposed methodology is applied to a three-stage forming process. Copyright (c) 2024 The Authors.
引用
收藏
页码:288 / 293
页数:6
相关论文
共 15 条
[1]   Generating In-Between Images Through Learned Latent Space Representation Using Variational Autoencoders [J].
Cristovao, Paulino ;
Nakada, Hidemoto ;
Tanimura, Yusuke ;
Asoh, Hideki .
IEEE ACCESS, 2020, 8 :149456-149467
[2]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[3]   Metamodeling techniques for CPU-intensive simulation-based design optimization: a survey [J].
Khatouri, Hanane ;
Benamara, Tariq ;
Breitkopf, Piotr ;
Demange, Jean .
ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2022, 9 (01)
[4]   Description of full-range strain hardening behavior of steels [J].
Li, Tao ;
Zheng, Jinyang ;
Chen, Zhiwei .
SPRINGERPLUS, 2016, 5
[5]   Metamodel-assisted design optimization in the field of structural engineering: A literature review [J].
Negrin, Ivan ;
Kripka, Moacir ;
Yepes, Victor .
STRUCTURES, 2023, 52 :609-631
[6]  
NELLES O., 2002, Nonlinear system identification
[7]  
Piegl L, 1995, The NURBS book, DOI [10.1007/978-3-642-97385-7, DOI 10.1007/978-3-642-97385-7]
[8]  
Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
[9]  
Schneider Fabian, 2023, Intelligent Data Engineering and Automated Learning - IDEAL 2023: 24th International Conference, Proceedings. Lecture Notes in Computer Science (14404), P311, DOI 10.1007/978-3-031-48232-8_29
[10]   Latin hypercubes for constrained design of experiments for data-driven models [J].
Schneider, Fabian ;
Hellmig, Ralph J. ;
Nelles, Oliver .
AT-AUTOMATISIERUNGSTECHNIK, 2023, 71 (10) :820-832