Periodic orbits and integrability of Rocard's system

被引:0
作者
Hu, Xinhao [1 ]
Tang, Yilei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, CMA Shanghai, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Rocard's system; Zero-Hopf bifurcation; Averaging method; Center problem; Periodic orbits; Integrability; LIOUVILLIAN INTEGRABILITY; AVERAGING THEORY; CENTER MANIFOLD; LORENZ; ORDER;
D O I
10.1016/j.physd.2025.134594
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1941, based on Van der Pol's relaxation oscillator equation, physicist Yves Rocard in the book (Rocard 1941) proposed a relaxation econometric oscillator to describe cyclical oscillations in the economy. Furthermore, it was later found that the model exhibits chaotic phenomenon. Rocard's chaotic system predates Lorenz's discovery by 22 years, which is a three-dimensional autonomous differential system. In this paper, we research periodic orbits and integrability of Rocard's system. We study the zero-Hopf bifurcation near equilibria and center problem on center manifolds, proving that one or three periodic orbits can bifurcate through the application of the averaging method up to arbitrary finite order, while obtaining center conditions for all equilibria through Lyapunov method. Furthermore, we investigate the integrability of Rocard's system, which has no algebraic first integrals, Darboux polynomials, or Darboux first integrals, and is not Liouvillian integrable.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Integrability and zero-Hopf bifurcation in the Sprott A system [J].
Barreira, Luis ;
Llibre, Jaume ;
Valls, Claudia .
BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 162
[2]  
Bleecker D., 1992, BASIC PARTIAL DIFFER
[3]   Zero-Hopf bifurcation in a 3D jerk system [J].
Braun, Francisco ;
Mereu, Ana C. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
[4]   FIXED-POINT THEORY AND NON-LINEAR PROBLEMS [J].
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (01) :1-39
[5]  
Bruns H., 1887, Acta Math, V11, P25, DOI [10.1007/BF02612319, DOI 10.1007/BF02612319]
[6]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[7]   On the integrability of the vocal fold model [J].
Demina, Maria ;
Gine, Jaume ;
Khajoei, Najmeh .
PHYSICA D-NONLINEAR PHENOMENA, 2023, 448
[8]   Puiseux Integrability of Differential Equations [J].
Demina, Maria, V ;
Gine, Jaume ;
Valls, Claudia .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (02)
[9]  
Dumortier F, 2006, UNIVERSITEXT, P1
[10]   The center problem on a center manifold in R3 [J].
Edneral, Victor F. ;
Mahdi, Adam ;
Romanovski, Valery G. ;
Shafer, Douglas S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2614-2622