Added value of inflammatory plasma biomarkers to pathologic biomarkers in predicting preclinical Alzheimer's disease

被引:1
|
作者
Leclerc, Haley [1 ]
Lee, Athene K. W. [2 ,3 ]
Kunicki, Zachary J. [3 ]
Alber, Jessica [1 ,2 ,4 ]
机构
[1] Univ Rhode Isl, Interdisciplinary Neurosci Program, Kingston, RI USA
[2] Butler Hosp Memory & Aging Program, Providence, RI USA
[3] Brown Univ, Dept Psychiat & Human Behav, Alpert Med Sch, Providence, RI USA
[4] Univ Rhode Isl, Dept Biomed & Pharmaceut Sci, Kingston, RI USA
基金
美国国家卫生研究院;
关键词
biomarkers; early diagnosis; inflammation; plasma proteomics; preclinical Alzheimer's disease; FLORBETAPIR-PET; AMYLOID-BETA; DECLINE; QUANTIFICATION; CLASSIFICATION; GUIDELINES; MARKERS;
D O I
10.1177/13872877241283692
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Plasma biomarkers have recently emerged for the diagnosis, assessment, and disease monitoring of Alzheimer's disease (AD), but have yet to be fully validated in preclinical AD. In addition to AD pathologic plasma biomarkers (amyloid-beta (A beta) and phosphorylated tau (p-tau) species), a proteomic panel can discriminate between symptomatic AD and cognitively unimpaired older adults in a dementia clinic population. Objective: Examine the added value of a plasma proteomic panel, validated in symptomatic AD, over standard AD pathologic plasma biomarkers and demographic and genetic (apolipoprotein (APOE) epsilon 4 status) risk factors in detecting preclinical AD. Methods: 125 cognitively unimpaired older adults (mean age = 66 years) who completed A beta PET and plasma draw were analyzed using multiple regression with A beta PET status (positive versus negative) as the outcome to determine the best fit for predicting preclinical AD. Model 1 included age, education, and gender. Model 2 and 3 added predictors APOE epsilon 4 status (carrier versus non-carrier) and AD pathologic blood biomarkers (A beta 42/40 ratio, p-tau181), respectively. Random forest modeling established the 5 proteomic markers from the proteomic panel that best predicted A beta PET status, and these markers were added in Model 4. Results: The best model for predicting A beta PET status included age, years of education, APOE epsilon 4 status, A beta 42/40 ratio, and p-tau181. Adding the top 5 proteomic markers did not significantly improve the model. Conclusions: Proteomic markers in plasma did not add predictive value to standard AD pathologic plasma biomarkers in predicting preclinical AD in this sample.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [1] Inflammatory plasma biomarkers in subjects with preclinical Alzheimer’s disease
    Samantha Prins
    Marieke L. de Kam
    Charlotte E. Teunissen
    Geert Jan Groeneveld
    Alzheimer's Research & Therapy, 14
  • [2] Inflammatory plasma biomarkers in subjects with preclinical Alzheimer's disease
    Prins, Samantha
    de Kam, Marieke L.
    Teunissen, Charlotte E.
    Groeneveld, Geert Jan
    ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
  • [3] Inflammatory biomarkers in Alzheimer's disease plasma
    Morgan, Angharad R.
    Touchard, Samuel
    Leckey, Claire
    O'Hagan, Caroline
    Nevado-Holgado, Alejo J.
    Barkhof, Frederik
    Bertram, Lars
    Blin, Olivier
    Bos, Isabelle
    Dobricic, Valerija
    Engelborghs, Sebastiaan
    Frisoni, Giovanni
    Froelich, Lutz
    Gabel, Silvey
    Johannsen, Peter
    Kettunen, Petronella
    Koszewska, Iwona
    Legido-Quigley, Cristina
    Lleo, Alberto
    Martinez-Lage, Pablo
    Mecocci, Patrizia
    Meersmans, Karen
    Luis Molinuevo, Jose
    Peyratout, Gwendoline
    Popp, Julius
    Richardson, Jill
    Sala, Isabel
    Scheltens, Philip
    Streffer, Johannes
    Soininen, Hikka
    Tainta-Cuezva, Mikel
    Teunissen, Charlotte
    Tsolaki, Magda
    Vandenberghe, Rik
    Visser, Pieter Jelle
    Vos, Stephanie
    Wahlund, Lars-Olof
    Wallin, Anders
    Westwood, Sarah
    Zetterberg, Henrik
    Lovestone, Simon
    Morgan, B. Paul
    Bullmore, Edward T.
    Bhatti, Junaid
    Chamberlain, Samuel J.
    Correia, Marta M.
    Crofts, Anna L.
    Dickinson, Amber
    Foster, Andrew C.
    Kitzbichler, Manfred G.
    ALZHEIMERS & DEMENTIA, 2019, 15 (06) : 776 - 787
  • [4] Biomarkers and Tools for Predicting Alzheimer's Disease in the Preclinical Stage
    Li, Tao-Ran
    Yang, Qin
    Hu, Xiaochen
    Han, Ying
    CURRENT NEUROPHARMACOLOGY, 2022, 20 (04) : 713 - 737
  • [5] Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease
    Chatterjee, Pratishtha
    Pedrini, Steve
    Ashton, Nicholas J.
    Tegg, Michelle
    Goozee, Kathryn
    Singh, Abhay K.
    Karikari, Thomas K.
    Simren, Joel
    Vanmechelen, Eugeen
    Armstrong, Nicola J.
    Hone, Eugene
    Asih, Prita R.
    Taddei, Kevin
    Dore, Vincent
    Villemagne, Victor L.
    Sohrabi, Hamid R.
    Zetterberg, Henrik
    Masters, Colin L.
    Blennow, Kaj
    Martins, Ralph N.
    ALZHEIMERS & DEMENTIA, 2022, 18 (06) : 1141 - 1154
  • [6] Biomarkers for Preclinical Alzheimer's Disease
    Tan, Chen-Chen
    Yu, Jin-Tai
    Tan, Lan
    JOURNAL OF ALZHEIMERS DISEASE, 2014, 42 (04) : 1051 - 1069
  • [7] Biomarkers in preclinical Alzheimer's disease
    Chong, Mei Sian
    Lim, Wee Shiong
    Sahadevan, Suresh
    CURRENT OPINION IN INVESTIGATIONAL DRUGS, 2006, 7 (07) : 600 - 607
  • [8] Imaging biomarkers in Alzheimer's disease: added value in the clinical setting
    Morbeli, Silvia
    Bauckneht, Matteo
    Scheltens, Philip
    QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 61 (04): : 360 - 371
  • [9] The potential clinical value of plasma biomarkers in Alzheimer's disease
    Blennow, Kaj
    Galasko, Douglas
    Perneczky, Robert
    Quevenco, Frances-Catherine
    van der Flier, Wiesje M.
    Akinwonmi, Akin
    Carboni, Margherita
    Jethwa, Alexander
    Suridjan, Ivonne
    Zetterberg, Henrik
    ALZHEIMERS & DEMENTIA, 2023, 19 (12) : 5805 - 5816
  • [10] Plasma biomarkers of Alzheimer's disease
    Kawarabayashi, Takeshi
    Shoji, Mikio
    CURRENT OPINION IN PSYCHIATRY, 2008, 21 (03) : 260 - 267