On a ternary Diophantine inequality with one prime of the form p=x2+y2+1

被引:0
作者
Liu, Yuhui [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine inequality; Exponential sum; Primes;
D O I
10.1007/s11139-024-00986-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < c < (127)/(113 )be a fixed number and N be a sufficiently large real number. In this paper, it is proved that the Diophantine inequality |p (c)(1) + p (c)(2) + p(3)(c) - N | < epsilon is solvable in prime variables p(1 ), p(2) , p(3) such that p 1 = x(2) + y(2) + 1. This result constitutes a refinement upon that of Dimitrov (Ramanujan J 59:571-607, 2022).
引用
收藏
页码:38 / 38
页数:1
相关论文
共 17 条
[1]   SOME DIOPHANTINE EQUATIONS AND INEQUALITIES WITH PRIMES [J].
Baker, Roger .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2021, 64 (02) :203-250
[2]   Some applications of the double large sieve [J].
Baker, Roger ;
Weingartner, Andreas .
MONATSHEFTE FUR MATHEMATIK, 2013, 170 (3-4) :261-304
[3]  
Dimitrov S., 2022, A ternary Diophantine inequality by primes with one of the form Ramanujan J, V59, P571, DOI [10.1007/s11139-021-00545-1, DOI 10.1007/S11139-021-00545-1]
[4]  
Dimitrov SI, 2017, JP J ALGEBR NUMBER T, V39, P335, DOI 10.17654/NT039030335
[5]  
Dimitrov S, 2024, INDIAN J PURE AP MAT, V55, P168, DOI 10.1007/s13226-022-00354-2
[6]   The quaternary Piatetski-Shapiro inequality with one prime of the form p = x2 + y2+1 [J].
Dimitrov, Stoyan Ivanov .
LITHUANIAN MATHEMATICAL JOURNAL, 2022, 62 (02) :170-191
[7]   Diophantine approximation with one prime of the form p = x2 + y2+1 [J].
Dimitrov, Stoyan Ivanov .
LITHUANIAN MATHEMATICAL JOURNAL, 2021, 61 (04) :445-459
[8]  
Graham S. W., 1991, CORPUTS METHOD EXPON, V126
[9]   THE PJATECKII-SAPIRO PRIME NUMBER THEOREM [J].
HEATHBROWN, DR .
JOURNAL OF NUMBER THEORY, 1983, 16 (02) :242-266
[10]  
Hooley C., 1976, Applications of Sieve Methods to the Theory of Numbers