A 3D Dual Encoder Mirror Difference ResU-Net for Multimodal Brain Tumor Segmentation

被引:0
|
作者
Xing, Qiwei [1 ]
Li, Zhihua [1 ]
Jing, Yongxia [1 ]
Chen, Xiaolin [1 ]
机构
[1] Qiongtai Normal Univ, Inst Educ Big Data & Artificial Intelligence, Haikou 571100, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
基金
中国国家自然科学基金;
关键词
Image segmentation; Brain tumors; Tumors; Three-dimensional displays; Feature extraction; Magnetic resonance imaging; Brain modeling; Mirrors; Decoding; Deep learning; Multimodal MRI; brain tumor segmentation; mirror difference; residual U-Net; NETWORK;
D O I
10.1109/ACCESS.2024.3522682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain tumors are characterized by their relatively high incidence and mortality rates, highlighting the utmost importance of precise automatic segmentation for subsequent diagnosis and treatment. Although deep learning has significantly advanced the field of accurate and efficient automatic brain tumor segmentation, several challenges still persist. In this paper, we introduce a novel architecture called the Dual Encoder Mirror Difference Residual U-Net (DEMD-ResUNet). This approach incorporates dual encoders that process both the original and horizontally flipped images. Additionally, residual blocks are employed to substitute the original convolutional blocks in the encoder section of the U-Net structure. This modification not only streamlines network training but also mitigates issues related to network degradation and the loss of detailed information. To further enhance feature representation, we propose a Multimodal Difference Feature Augmentation (MDFA) module, which effectively highlights abnormal regions in both the original and mirrored brain tumor images to facilitate better feature discrimination. Moreover, a Mirror Difference Feature Fusion (MDFF) module is integrated between the dual encoders and the decoder. This module efficiently transfers features from both the original and mirrored images to the decoder, leveraging the symmetrical information inherent in the images and subsequently boosting the segmentation performance of the model. Ablation experiments conducted on the DEMD-ResUNet model demonstrate the efficacy of its various modules and hyperparameter settings. When evaluated on the BraTS 2018 and BraTS 2019 datasets, our model achieves impressive Dice similarity coefficient (DSC) values of 0.862, 0.925, and 0.905 for Enhanced tumor (ET), Whole tumor (WT), and Tumor core (TC) in the former, and 0.869, 0.922, and 0.916 in the latter, respectively.
引用
收藏
页码:1621 / 1635
页数:15
相关论文
共 50 条
  • [41] A Multi Brain Tumor Region Segmentation Model Based on 3D U-Net
    Li, Zhenwei
    Wu, Xiaoqin
    Yang, Xiaoli
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [42] Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
    Ullah, Faizad
    Ansari, Shahab U.
    Hanif, Muhammad
    Ayari, Mohamed Arselene
    Chowdhury, Muhammad Enamul Hoque
    Khandakar, Amith Abdullah
    Khan, Muhammad Salman
    SENSORS, 2021, 21 (22)
  • [43] 3D U-Net Based Brain Tumor Segmentation and Survival Days Prediction
    Wang, Feifan
    Jiang, Runzhou
    Zheng, Liqin
    Meng, Chun
    Biswal, Bharat
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 131 - 141
  • [44] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [45] 3D U-Net for Brain Tumour Segmentation
    Mehta, Raghav
    Arbel, Tal
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 254 - 266
  • [46] TDPC-Net: Multi-scale lightweight and efficient 3D segmentation network with a 3D attention mechanism for brain tumor segmentation
    Li, Yixuan
    Kang, Jie
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [47] 3D CMM-Net with Deeper Encoder for Semantic Segmentation of Brain Tumors in BraTS2021 Challenge
    Choi, Yoonseok
    Al-Masni, Mohammed A.
    Kim, Dong-Hyun
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 333 - 343
  • [48] SDS-Net: A lightweight 3D convolutional neural network with multi-branch attention for multimodal brain tumor accurate segmentation
    Wu, Qian
    Pei, Yuyao
    Cheng, Zihao
    Hu, Xiaopeng
    Wang, Changqing
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 17384 - 17406
  • [49] Combined 3D CNN for Brain Tumor Segmentation
    Ahmad, Parvez
    Jin, Hai
    Qamar, Saqib
    Zheng, Ran
    Jiang, Wenbin
    THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020), 2020, : 113 - 116
  • [50] Multimodal MRI Brain Tumor Segmentation using 3D and 3D/2D Methods: A Study on the MICCAI BRATS Dataset
    Gtifa, Wafa
    Khoja, Intissar
    Sakly, Anis
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,