A 3D Dual Encoder Mirror Difference ResU-Net for Multimodal Brain Tumor Segmentation

被引:0
|
作者
Xing, Qiwei [1 ]
Li, Zhihua [1 ]
Jing, Yongxia [1 ]
Chen, Xiaolin [1 ]
机构
[1] Qiongtai Normal Univ, Inst Educ Big Data & Artificial Intelligence, Haikou 571100, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
基金
中国国家自然科学基金;
关键词
Image segmentation; Brain tumors; Tumors; Three-dimensional displays; Feature extraction; Magnetic resonance imaging; Brain modeling; Mirrors; Decoding; Deep learning; Multimodal MRI; brain tumor segmentation; mirror difference; residual U-Net; NETWORK;
D O I
10.1109/ACCESS.2024.3522682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain tumors are characterized by their relatively high incidence and mortality rates, highlighting the utmost importance of precise automatic segmentation for subsequent diagnosis and treatment. Although deep learning has significantly advanced the field of accurate and efficient automatic brain tumor segmentation, several challenges still persist. In this paper, we introduce a novel architecture called the Dual Encoder Mirror Difference Residual U-Net (DEMD-ResUNet). This approach incorporates dual encoders that process both the original and horizontally flipped images. Additionally, residual blocks are employed to substitute the original convolutional blocks in the encoder section of the U-Net structure. This modification not only streamlines network training but also mitigates issues related to network degradation and the loss of detailed information. To further enhance feature representation, we propose a Multimodal Difference Feature Augmentation (MDFA) module, which effectively highlights abnormal regions in both the original and mirrored brain tumor images to facilitate better feature discrimination. Moreover, a Mirror Difference Feature Fusion (MDFF) module is integrated between the dual encoders and the decoder. This module efficiently transfers features from both the original and mirrored images to the decoder, leveraging the symmetrical information inherent in the images and subsequently boosting the segmentation performance of the model. Ablation experiments conducted on the DEMD-ResUNet model demonstrate the efficacy of its various modules and hyperparameter settings. When evaluated on the BraTS 2018 and BraTS 2019 datasets, our model achieves impressive Dice similarity coefficient (DSC) values of 0.862, 0.925, and 0.905 for Enhanced tumor (ET), Whole tumor (WT), and Tumor core (TC) in the former, and 0.869, 0.922, and 0.916 in the latter, respectively.
引用
收藏
页码:1621 / 1635
页数:15
相关论文
共 50 条
  • [31] A 3D Cross-Modality Feature Interaction Network With Volumetric Feature Alignment for Brain Tumor and Tissue Segmentation
    Zhuang, Yuzhou
    Liu, Hong
    Song, Enmin
    Hung, Chih-Cheng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) : 75 - 86
  • [32] SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer
    Jiang, Yun
    Zhang, Yuan
    Lin, Xin
    Dong, Jinkun
    Cheng, Tongtong
    Liang, Jing
    BRAIN SCIENCES, 2022, 12 (06)
  • [33] The multimodal MRI brain tumor segmentation based on AD-Net
    Peng, Yanjun
    Sun, Jindong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 80
  • [34] Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images
    Jun, Wen
    Xu, Haoxiang
    Wang, Zhang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 183 - 193
  • [35] 3D AIR-UNet: attention–inception–residual-based U-Net for brain tumor segmentation from multimodal MRI
    Vani Sharma
    Mohit Kumar
    Arun Kumar Yadav
    Neural Computing and Applications, 2025, 37 (16) : 9969 - 9990
  • [36] HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation
    Qamar, Saqib
    Ahmad, Parvez
    Shen, Linlin
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 50 - 57
  • [37] Brain Tumor Segmentation and Survival Prediction Using Patch Based Modified 3D U-Net
    Parmar, Bhavesh
    Parikh, Mehul
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 398 - 409
  • [38] Segmentation of the Multimodal Brain Tumor Images Used Res-U-Net
    Sun, Jindong
    Peng, Yanjun
    Li, Dapeng
    Guo, Yanfei
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 263 - 273
  • [39] A 3D lightweight network with Roberts edge enhancement model (LR-Net) for brain tumor segmentation
    Qingxu Meng
    Weijiang Wang
    Hang Qi
    Hua Dang
    Minli Jia
    Xiaohua Wang
    Scientific Reports, 15 (1)
  • [40] Advances in Brain Tumor Segmentation and Skull Stripping: A 3D Residual Attention U-Net Approach
    Dawood, Tamara A.
    Hashim, Ashwaq T.
    Nasser, Ahmed R.
    TRAITEMENT DU SIGNAL, 2023, 40 (05) : 1895 - 1908