A 3D Dual Encoder Mirror Difference ResU-Net for Multimodal Brain Tumor Segmentation

被引:0
|
作者
Xing, Qiwei [1 ]
Li, Zhihua [1 ]
Jing, Yongxia [1 ]
Chen, Xiaolin [1 ]
机构
[1] Qiongtai Normal Univ, Inst Educ Big Data & Artificial Intelligence, Haikou 571100, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
基金
中国国家自然科学基金;
关键词
Image segmentation; Brain tumors; Tumors; Three-dimensional displays; Feature extraction; Magnetic resonance imaging; Brain modeling; Mirrors; Decoding; Deep learning; Multimodal MRI; brain tumor segmentation; mirror difference; residual U-Net; NETWORK;
D O I
10.1109/ACCESS.2024.3522682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain tumors are characterized by their relatively high incidence and mortality rates, highlighting the utmost importance of precise automatic segmentation for subsequent diagnosis and treatment. Although deep learning has significantly advanced the field of accurate and efficient automatic brain tumor segmentation, several challenges still persist. In this paper, we introduce a novel architecture called the Dual Encoder Mirror Difference Residual U-Net (DEMD-ResUNet). This approach incorporates dual encoders that process both the original and horizontally flipped images. Additionally, residual blocks are employed to substitute the original convolutional blocks in the encoder section of the U-Net structure. This modification not only streamlines network training but also mitigates issues related to network degradation and the loss of detailed information. To further enhance feature representation, we propose a Multimodal Difference Feature Augmentation (MDFA) module, which effectively highlights abnormal regions in both the original and mirrored brain tumor images to facilitate better feature discrimination. Moreover, a Mirror Difference Feature Fusion (MDFF) module is integrated between the dual encoders and the decoder. This module efficiently transfers features from both the original and mirrored images to the decoder, leveraging the symmetrical information inherent in the images and subsequently boosting the segmentation performance of the model. Ablation experiments conducted on the DEMD-ResUNet model demonstrate the efficacy of its various modules and hyperparameter settings. When evaluated on the BraTS 2018 and BraTS 2019 datasets, our model achieves impressive Dice similarity coefficient (DSC) values of 0.862, 0.925, and 0.905 for Enhanced tumor (ET), Whole tumor (WT), and Tumor core (TC) in the former, and 0.869, 0.922, and 0.916 in the latter, respectively.
引用
收藏
页码:1621 / 1635
页数:15
相关论文
共 50 条
  • [21] Multimodal MRI brain tumor segmentation using 3D attention UNet with dense encoder blocks and residual decoder blocks
    Tassew T.
    Ashamo B.A.
    Nie X.
    Multimedia Tools and Applications, 2025, 84 (7) : 3611 - 3633
  • [22] Aggregating Multi-scale Prediction Based on 3D U-Net in Brain Tumor Segmentation
    Chen, Minglin
    Wu, Yaozu
    Wu, Jianhuang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 142 - 152
  • [23] MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks
    Tie, Juhong
    Peng, Hui
    Zhou, Jiliu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02): : 427 - 445
  • [24] SF-Net: A Multi-Task Model for Brain Tumor Segmentation in Multimodal MRI via Image Fusion
    Liu, Yu
    Mu, Fuhao
    Shi, Yu
    Chen, Xun
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1799 - 1803
  • [25] GAIR-U-Net: 3D guided attention inception residual u-net for brain tumor segmentation using multimodal MRI images
    Rutoh, Evans Kipkoech
    Guang, Qin Zhi
    Bahadar, Noor
    Raza, Rehan
    Hanif, Muhammad Shehzad
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (06)
  • [26] Multimodal weighted network for 3D brain tumor segmentation in MRI images
    Zhou, Zhiguo
    Wang, Rongfang
    Yang, Jing
    Xu, Rongbin
    Guo, Jinkun
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [27] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [28] Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
    Ullah, Faizad
    Ansari, Shahab U.
    Hanif, Muhammad
    Ayari, Mohamed Arselene
    Chowdhury, Muhammad Enamul Hoque
    Khandakar, Amith Abdullah
    Khan, Muhammad Salman
    SENSORS, 2021, 21 (22)
  • [29] 3D CMM-Net with Deeper Encoder for Semantic Segmentation of Brain Tumors in BraTS2021 Challenge
    Choi, Yoonseok
    Al-Masni, Mohammed A.
    Kim, Dong-Hyun
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 333 - 343