Correction to: Positivity Among P-Partition Generating Functions

被引:0
作者
Lesnevich, Nathan R. T. [1 ]
Mcnamara, Peter R. W. [2 ]
机构
[1] Oklahoma State Univ, 524 Math Sci, Stillwater, OK 74078 USA
[2] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
关键词
P-partition; Caterpillar poset; Quasisymmetric function; F-positive; M-positive;
D O I
10.1007/s00026-025-00744-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We correct a theorem on caterpillar posets in Lesnevich and McNamara (Ann Comb 26(1):171-204, 2022). In strengthening the hypotheses on the caterpillar posets we consider, we are also able to strengthen the conclusion on the types of positivity that result.
引用
收藏
页数:7
相关论文
共 10 条
[1]  
Albertin D, 2024, AUSTRALAS J COMB, V90, P341
[2]   Quasisymmetric functions distinguishing trees [J].
Aval, Jean-Christophe ;
Djenabou, Karimatou ;
Mcnamara, Peter R. W. .
ALGEBRAIC COMBINATORICS, 2023, 6 (03) :595-614
[3]   Order quasisymmetric functions distinguish rooted trees [J].
Hasebe, Takahiro ;
Tsujie, Shuhei .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (3-4) :499-515
[4]   Positivity Among P-partition Generating Functions [J].
Lesnevich, Nathan R. T. ;
McNamara, Peter R. W. .
ANNALS OF COMBINATORICS, 2022, 26 (01) :171-204
[5]   P-Partitions and Quasisymmetric Power Sums [J].
Liu, Ricky Ini ;
Weselcouch, Michael .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (16) :12707-12747
[6]   P-partition generating function equivalence of naturally labeled posets [J].
Liu, Ricky Ini ;
Weselcouch, Michael .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 170
[7]   Equality of P-Partition Generating Functions [J].
McNamara, Peter R. W. ;
Ward, Ryan E. .
ANNALS OF COMBINATORICS, 2014, 18 (03) :489-514
[8]  
Stanley R.P., 1999, Cambridge Studies in Advanced Mathematics, V62, P581
[9]  
The Sage Developers, 2023, SageMath, the Sage Mathematics Software System (Version 10.0)
[10]  
Zhou JRY, 2020, Arxiv, DOI arXiv:2008.00424