COVID-19 recognition from chest X-ray images by combining deep learning with transfer learning

被引:0
|
作者
Zhang, Chang-Jiang [1 ,2 ]
Ruan, Lu-Ting [3 ]
Ji, Ling-Feng [2 ]
Feng, Li-Li [1 ]
Tang, Fu-Qin [1 ]
机构
[1] Taizhou Univ, Taizhou Cent Hosp, Affiliated Hosp, Taizhou 318000, Peoples R China
[2] Taizhou Univ, Sch Elect & Informat Engn, Sch Big Data Sci, Taizhou, Peoples R China
[3] Zhejiang Normal Univ, Coll Phys & Elect Informat Engn, Jinhua, Peoples R China
来源
DIGITAL HEALTH | 2025年 / 11卷
关键词
COVID-19; chest X-ray images; image classification; deep learning; attention;
D O I
10.1177/20552076251319667
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective Based on the current research status, this paper proposes a deep learning model named Covid-DenseNet for COVID-19 detection from CXR (computed tomography) images, aiming to build a model with smaller computational complexity, stronger generalization ability, and excellent performance on benchmark datasets and other datasets with different sample distribution features and sample sizes.Methods The proposed model first extracts and obtains features of multiple scales from the input image through transfer learning, followed by assigning internal weights to the extracted features through the attention mechanism to enhance important features and suppress irrelevant features; finally, the model fuses these features of different scales through the multi-scale fusion architecture we designed to obtain richer semantic information and improve modeling efficiency.Results We evaluated our model and compared it with advanced models on three publicly available chest radiology datasets of different types, one of which is the baseline dataset, on which we constructed the model Covid-DenseNet, and the recognition accuracy on this test set was 96.89%, respectively. With recognition accuracy of 98.02% and 96.21% on the other two publicly available datasets, our model performs better than other advanced models. In addition, the performance of the model was further evaluated on external test sets, trained on data sets with balanced sample distribution (experiment 1) and unbalanced sample distribution (experiment 2), identified on the same external test set, and compared with DenseNet121. The recognition accuracy of the model in experiment 1 and experiment 2 is 80% and 77.5% respectively, which is 3.33% and 4.17% higher than that of DenseNet121 on external test set. On this basis, we also changed the number of samples in experiment 1 and experiment 2, and compared the impact of the change in the number of training set samples on the recognition accuracy of the model on the external test set. The results showed that when the number of samples increased and the sample features became more abundant, the trained Covid-DenseNet performed better on the external test set and the model became more robust.Conclusion Compared with other advanced models, our model has achieved better results on multiple datasets, and the recognition effect on external test sets is also quite good, with good generalization performance and robustness, and with the enrichment of sample features, the robustness of the model is further improved, and it has better clinical practice ability.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Deep Learning Transfer with AlexNet for chest X-ray COVID-19 recognition
    Cortes, E.
    Sanchez, S.
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (06) : 944 - 951
  • [2] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [3] Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
    Minaee, Shervin
    Kafieh, Rahele
    Sonka, Milan
    Yazdani, Shakib
    Soufi, Ghazaleh Jamalipour
    MEDICAL IMAGE ANALYSIS, 2020, 65
  • [4] Deep learning based detection of COVID-19 from chest X-ray images
    Sarra Guefrechi
    Marwa Ben Jabra
    Adel Ammar
    Anis Koubaa
    Habib Hamam
    Multimedia Tools and Applications, 2021, 80 : 31803 - 31820
  • [5] Deep learning based detection of COVID-19 from chest X-ray images
    Guefrechi, Sarra
    Ben Jabra, Marwa
    Ammar, Adel
    Koubaa, Anis
    Hamam, Habib
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31803 - 31820
  • [6] Deep Transfer Learning with Apache Spark to Detect COVID-19 in chest X-ray Images
    Benbrahim, Houssam
    Hachimi, Hanaa
    Amine, Aouatif
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2020, 23 : S117 - S129
  • [7] COVID-19 detection from chest X-ray images using transfer learning
    El Houby, Enas M. F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Detection of COVID-19 from chest x-ray images using transfer learning
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)
  • [9] Identification of COVID-19 with Chest X-ray Images using Deep Learning
    Khandar, Punam
    Thaokar, Chetana
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05): : 694 - 700
  • [10] Transfer Learning Methods for Classification of COVID-19 Chest X-ray Images
    Singh, Hardit
    Saini, Simarjeet S.
    Lakshminarayanan, Vasudevan
    MULTIMODAL BIOMEDICAL IMAGING XVI, 2021, 11634