Medical image segmentation;
U-shaped convolutional neural network;
Context encoding;
Global attention;
NETWORK;
NET;
D O I:
10.1007/s00371-025-03838-4
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
Medical image segmentation is crucial for extracting diagnostic information from complex images. Traditional U-shaped convolutional neural networks (CNNs) and their variants have shown promising results but struggle with cross-dimensional interaction and spatial information loss. To address these issues, this paper introduces a novel medical image segmentation model, global attention context encoder network (GAC-Net). GAC-Net integrates a context encoding block (CEB) into the encoder to capture multi-scale semantic information and a global attention block (GAB) into the skip connections to enhance long-range semantic interaction and mitigate semantic loss. Experimental results on five public medical image datasets demonstrate that GAC-Net achieves state-of-the-art performance, with improvements in metrics such as mean intersection over union (MIoU), Hausdorff distance (HD), and dice similarity coefficient (DSC). For example, in cell contour segmentation, GAC-Net achieved an MIoU of 90%, an HD of 10.26 mm, a DSC of 94%, and an ASD of 9.51 mm. The proposed model effectively improves segmentation accuracy, providing new insights into medical image segmentation research. The code for this paper has been released at https://github.com/wu501-CPU/GAC-Net.
机构:
Tianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R ChinaTianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
Lv, Chunjie
Li, Biyuan
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
Tianjin Dev Zone Jingnuohanhai Data Technol Co Ltd, Tianjin, Peoples R ChinaTianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
Li, Biyuan
Wang, Xiuwei
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R ChinaTianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
Wang, Xiuwei
Cai, Pengfei
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R ChinaTianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
Cai, Pengfei
Yang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R ChinaTianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
Yang, Bo
Sun, Gaowei
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R ChinaTianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
Sun, Gaowei
Yan, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Sch Math, Tianjin 300072, Peoples R ChinaTianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
机构:
Peking Univ, Ctr Data Sci, Beijing, Peoples R China
Peking Univ, Ctr Data Sci Hlth & Med, Beijing, Peoples R China
Beijing Inst Big Data Res, Lab Biomed Image Anal, Beijing, Peoples R ChinaPeking Univ, Ctr Data Sci, Beijing, Peoples R China
Zhang, Mo
Dong, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Ctr Data Sci, Beijing, Peoples R China
Peking Univ, Beijing Int Ctr Math Res BICMR, Beijing, Peoples R ChinaPeking Univ, Ctr Data Sci, Beijing, Peoples R China
Dong, Bin
Li, Quanzheng
论文数: 0引用数: 0
h-index: 0
机构:
Massachusetts Gen Hosp, Harvard Med Sch, MGH BWH Ctr Clin Data Sci, Ctr Adv Med Comp & Anal,Dept Radiol, Boston, MA 02114 USAPeking Univ, Ctr Data Sci, Beijing, Peoples R China
Li, Quanzheng
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022),
2022,