The impact of the design of MoO3 nanorods on the bactericidal performance

被引:2
作者
Castellanos-Espinoza, Raul [1 ]
Gonzalez-Uribe, Gabriela [2 ]
Arjona, Noe [3 ]
Rodriguez-Gonzalez, Claramaria [3 ]
Ramos-Castillo, Carlos Manuel [3 ]
Alvarez-Contreras, Lorena [4 ]
Luna-Barcenas, Gabriel [5 ]
Espana-Sanchez, Beatriz Liliana [3 ]
Guerra-Balcazar, Minerva [1 ]
机构
[1] Univ Autonoma Queretaro, Fac Ingn, Div Investigacion&Posgrado, Santiago De Queretaro 76010, Queretaro, Mexico
[2] Univ Tecnol Queretaro, Ave Pie La Cuesta 2501, Santiago De Queretaro 76148, Qro, Mexico
[3] Ctr Investigac & Desarrollo Tecnol Electroquim SC, Parque Tecnol Queretaro S-N Sanfandila, Pedro Escobedo 76703, Queretaro, Mexico
[4] Ctr Invest Mat Avanzados S C, Complejo Ind Chihuahua, Chihuahua 31136, Mexico
[5] Tecnol Monterrey, Inst Adv Mat Sustainable Mfg, Sch Engn & Sci, Monterrey, Mexico
关键词
Molybdenum oxide; Nanorods; Crystal growth; Antibacterial activity; Electroactive area; MOLYBDENUM TRIOXIDE; NANOSTRUCTURES; NANOPARTICLES; COMPOSITES; MORPHOLOGY; CRYSTAL; H-MOO3;
D O I
10.1016/j.apsusc.2024.161889
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Our work evaluates the impact of crystallization rate during the synthesis of alpha-MoO3 nanorods and their bactericidal performance against Gram (+) S. aureus and Gram (-) E. coli. For this purpose, alpha-MoO3 nanorods were synthesized by varying the crystallization times to 12, 24, and 48 h. XRD patterns reveal that crystallization time changes crystal size. The growth of alpha-MoO3 does not show chemical modifications. However, SEM and TEM reveal the characteristic nanorods morphology, where the crystallization times affect the diameter. Crystal growth also changes the atomic percentage of Mo/O, which is determined by XPS. The above was reflected in the antibacterial performance of alpha-MoO3, evaluated at different nanoparticle concentrations (0.5-4 mg/mL). The alpha-MoO3 is an efficacious antibacterial for both pathogens by the enhanced crystal size, with higher bactericidal performance against Gram-positive bacteria, indicating that the rod architecture improves their interaction through electrostatic attraction with the peptidoglycan structure of S. aureus bacteria. In addition, electrochemical measurements indicate that the electroactive area of alpha-MoO3 plays a key role in the nanoparticle/ bacteria interaction. As a result, the intrinsic characteristics of alpha-MoO3 nanorods, including crystal size, morphology, nanorod diameter, oxygen vacancies, and EASA, influence the antibacterial activity, generating materials with potential biomedical applications.
引用
收藏
页数:11
相关论文
共 43 条
[1]  
Ahmad S A., 2020, Materials Science for Energy Technologies, V3, P756, DOI [10.1016/j.mset.2020.09.002, DOI 10.1016/J.MSET.2020.09.002]
[2]   MoO3 nanoplates reinforced the structural, electrical, mechanical, and antibacterial characteristics of polyvinyl pyrrolidone/sodium alginate polymer blend for optoelectronics and biological applications [J].
Al-Muntaser, A. A. ;
Althobiti, Randa A. ;
Morsi, M. A. ;
Alsalmah, Hessa A. ;
Tarabiah, A. E. ;
Alzahrani, Eman ;
Al-Hakimi, Ahmed N. ;
Abdallah, E. M. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 254
[3]  
Alghamdi SB, 2020, EUR J BIOL BIOTECHNO, V1, P1, DOI [10.24018/ejbio.2020.1.6.134, DOI 10.24018/EJBIO.2020.1.6.134]
[4]  
Avani A. V., 2023, Materials Today: Proceedings, P629, DOI 10.1016/j.matpr.2022.11.060
[5]   Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model [J].
Baltrusaitis, Jonas ;
Mendoza-Sanchez, Beatriz ;
Fernandez, Vincent ;
Veenstra, Rick ;
Dukstiene, Nijole ;
Roberts, Adam ;
Fairley, Neal .
APPLIED SURFACE SCIENCE, 2015, 326 :151-161
[6]   Tailoring the crystalline phase and size of the MoO3 quantum dots via sonication induced modified top-down method [J].
Borah, Dibya Jyoti ;
Mostako, A. T. T. ;
Malakar, A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 891
[7]   A facile synthesis and controlled growth of various MoO3 nanostructures and their gas-sensing properties [J].
Cao, Shixiu ;
Zhao, Cong ;
Xu, Jing .
SN APPLIED SCIENCES, 2019, 1 (10)
[8]   Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals: New Findings on Crystal-Structure-Dependent Charge Transport [J].
Chithambararaj, A. ;
Yogamalar, N. Rajeswari ;
Bose, A. Chandra .
CRYSTAL GROWTH & DESIGN, 2016, 16 (04) :1984-1995
[9]   Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles [J].
Chithambararaj, A. ;
Bose, A. Chandra .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (31) :8105-8110
[10]   Morphology-controlled synthesis of MoO3 nanostructures and its effect on heavy metal ion detection [J].
Choudhari, Upasana ;
Gadekar, Pundlik ;
Ramgir, Niranjan ;
Jagtap, Shweta ;
Debnath, A. K. ;
Muthe, K. P. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (25)