A Reynolds-semi-robust and pressure-robust Hybrid High-Order method for the time dependent incompressible Navier-Stokes equations on general meshes

被引:0
作者
Quiroz, Daniel Castanon [1 ]
Di Pietro, Daniele A. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Circuito Escolar S-N, Mexico City 04510, Mexico
[2] Univ Montpellier, IMAG, CNRS, F-34090 Montpellier, France
基金
欧洲研究理事会;
关键词
Hybrid high-order methods; Time-dependent incompressible flow; General meshes; Re-semi-robust error estimates; Pressure-robustness; DISCONTINUOUS-SKELETAL METHOD; VIRTUAL ELEMENTS;
D O I
10.1016/j.cma.2024.117660
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we develop and analyze a Reynolds-semi-robust and pressure-robust Hybrid High-Order (HHO) discretization of the incompressible Navier-Stokes equations. Reynolds-semi- robustness refers to the fact that, under suitable regularity assumptions, the right-hand side of the velocity error estimate does not depend on the inverse of the viscosity. This property is obtained here through a penalty term which involves a subtle projection of the convective term on a subgrid space constructed element by element. Moreover, a method has the pressure- robustness property when it guarantees velocity error estimates that are independent of the pressure. The estimated convergence order for the L infinity ( L 2 )- and L 2 ( energy )- norm of the velocity is h k + 2 1 , which matches the best results for continuous and discontinuous Galerkin methods and corresponds to the one expected for HHO methods in convection-dominated regimes. Two-dimensional numerical results on a variety of polygonal meshes complete the exposition.
引用
收藏
页数:26
相关论文
共 49 条
[1]   Virtual element method for the Navier-Stokes equation coupled with the heat equation [J].
Antonietti, Paola F. ;
Vacca, Giuseppe ;
Verani, Marco .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (06) :3396-3429
[2]   Local Projection FEM Stabilization for the Time-Dependent Incompressible Navier-Stokes Problem [J].
Arndt, Daniel ;
Dallmann, Helene ;
Lube, Gert .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) :1224-1250
[3]  
ARNOLD D. N., 2018, Finite element exterior calculus, DOI DOI 10.1137/1.9781611975543
[4]  
Boffi D., 2013, Springer Series in Computational Mathematics, V44, DOI 10.1007/978-3-642-36519-5
[5]  
Botti L., 2025, Math. Comp.
[6]   HHO Methods for the Incompressible Navier-Stokes and the Incompressible Euler Equations [J].
Botti, Lorenzo ;
Massa, Francesco Carlo .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
[7]   A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device [J].
Botti, Lorenzo ;
Di Pietro, Daniele A. ;
Droniou, Jerome .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 :786-816
[8]   A hybrid high-order method for creeping flows of non-Newtonian fluids [J].
Botti, Michele ;
Castanon Quiroz, Daniel ;
Di Pietro, Daniele A. ;
Harnist, Andre .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05) :2045-2073
[9]  
Brenner S.C., 2008, The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, Vthird, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]
[10]   Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations:: space discretization and convergence [J].
Burman, Erik ;
Fernandez, Miguel A. .
NUMERISCHE MATHEMATIK, 2007, 107 (01) :39-77