The time-fractional Schrodinger equation in the context of non-Markovian dynamics with dissipation

被引:0
|
作者
Zu, Chuanjin [1 ]
Yu, Xiangyang [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang 212100, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2025年 / 162卷 / 07期
基金
中国国家自然科学基金;
关键词
D O I
10.1063/5.0253816
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we examine the time-fractional Schrodinger equation from the perspective of non-Markovian dynamics in dissipative systems. First, we determine the range of the fractional derivative's order by examining the memory properties of the time-fractional Schrodinger equation. Next, we employ the Jaynes-Cummings model to identify the appropriate mathematical form of the imaginary unit. Finally, we use the refined equation to study quantum teleportation under amplitude damping noise. It was found that the time-fractional Schrodinger equation without fractional operations on the imaginary unit i might be more suitable for describing non-Markovian dynamics in dissipative systems. Our research may provide a new perspective on the time-fractional Schrodinger equation, contributing to a deeper understanding and further development of time-fractional quantum mechanics.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Discrete time crystals in the presence of non-Markovian dynamics
    Das, Bandita
    Jaseem, Noufal
    Mukherjee, Victor
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [42] Non-Markovian stochastic Schrodinger equation in k-space toward the calculation of carrier dynamics in organic semiconductors
    Lian, Man
    Wang, Yu-Chen
    Ke, Yaling
    Zhao, Yi
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (04):
  • [43] Non-Markovian dynamics of a qubit
    Maniscalco, S
    Petruccione, F
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [44] Fractional-time Schrodinger equation: Fractional dynamics on a comb
    Iomin, Alexander
    CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 348 - 352
  • [45] Non-Markovian quantum dissipation in the Kraus representation
    van Wonderen, AJ
    Lendi, K
    EUROPHYSICS LETTERS, 2005, 71 (05): : 737 - 743
  • [46] Different indicators for Markovian and non-Markovian dynamics
    El Anouz, K.
    El Allati, A.
    Metwally, N.
    PHYSICS LETTERS A, 2020, 384 (05)
  • [47] NON-MARKOVIAN MACROSCOPIC DYNAMICS
    GROSSMANN, S
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 47 (03): : 251 - 263
  • [48] Non-Markovian dynamics with fermions
    Sargsyan, V. V.
    Adamian, G. G.
    Antonenko, N. V.
    Lacroix, D.
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [49] On the solutions of (2+1)-dimensional time-fractional Schrodinger equation
    Li, Chao
    Guo, Qilong
    Zhao, Meimei
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 238 - 243
  • [50] Resonant optical solitons with conformable time-fractional nonlinear Schrodinger equation
    Seadawy, Aly R.
    Bilal, M.
    Younis, M.
    Rizvi, S. T. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (03):