The time-fractional Schrodinger equation in the context of non-Markovian dynamics with dissipation

被引:0
|
作者
Zu, Chuanjin [1 ]
Yu, Xiangyang [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang 212100, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2025年 / 162卷 / 07期
基金
中国国家自然科学基金;
关键词
D O I
10.1063/5.0253816
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we examine the time-fractional Schrodinger equation from the perspective of non-Markovian dynamics in dissipative systems. First, we determine the range of the fractional derivative's order by examining the memory properties of the time-fractional Schrodinger equation. Next, we employ the Jaynes-Cummings model to identify the appropriate mathematical form of the imaginary unit. Finally, we use the refined equation to study quantum teleportation under amplitude damping noise. It was found that the time-fractional Schrodinger equation without fractional operations on the imaginary unit i might be more suitable for describing non-Markovian dynamics in dissipative systems. Our research may provide a new perspective on the time-fractional Schrodinger equation, contributing to a deeper understanding and further development of time-fractional quantum mechanics.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] NON-MARKOVIAN MESOSCOPIC EQUILIBRIUM DYNAMICS AND FLUCTUATION-DISSIPATION THEOREM
    HANGGI, P
    TALKNER, P
    GRABERT, H
    HELVETICA PHYSICA ACTA, 1978, 51 (04): : 518 - 518
  • [32] Non-Markovian Boltzmann equation
    Kremp, D
    Bonitz, M
    Kraeft, WD
    Schlanges, M
    ANNALS OF PHYSICS, 1997, 258 (02) : 320 - 359
  • [33] A Bohmian approach to the non-Markovian non-linear Schrodinger-Langevin equation
    Vargas, Andres F.
    Morales-Duran, Nicolas
    Bargueno, Pedro
    ANNALS OF PHYSICS, 2015, 356 : 498 - 504
  • [34] A non-Markovian stochastic Schrodinger equation developed from a hidden variable interpretation
    Gambetta, J
    Wiseman, HM
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS, 2003, 5111 : 313 - 324
  • [35] INTERPRETATION OF A SCHRODINGER-LIKE EQUATION DERIVED FROM A NON-MARKOVIAN PROCESS
    CAVALLERI, G
    ZECCA, A
    PHYSICAL REVIEW B, 1991, 43 (04): : 3223 - 3227
  • [36] Stochastic Schrodinger equation for a non-Markovian dissipative qubit-qutrit system
    Jing, Jun
    Yu, Ting
    EPL, 2011, 96 (04)
  • [37] Exact Closed Master Equation for Gaussian Non-Markovian Dynamics
    Ferialdi, L.
    PHYSICAL REVIEW LETTERS, 2016, 116 (12)
  • [38] Time-local unraveling of non-Markovian stochastic Schrodinger equations
    Tilloy, Antoine
    QUANTUM, 2017, 1
  • [39] Origin of the fractional derivative and fractional non-Markovian continuous-time processes
    Van Mieghem, P.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [40] Markovian embedding procedures for non-Markovian stochastic Schrodinger equations
    Li, Xiantao
    PHYSICS LETTERS A, 2021, 387