The time-fractional Schrodinger equation in the context of non-Markovian dynamics with dissipation

被引:0
|
作者
Zu, Chuanjin [1 ]
Yu, Xiangyang [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang 212100, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2025年 / 162卷 / 07期
基金
中国国家自然科学基金;
关键词
D O I
10.1063/5.0253816
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we examine the time-fractional Schrodinger equation from the perspective of non-Markovian dynamics in dissipative systems. First, we determine the range of the fractional derivative's order by examining the memory properties of the time-fractional Schrodinger equation. Next, we employ the Jaynes-Cummings model to identify the appropriate mathematical form of the imaginary unit. Finally, we use the refined equation to study quantum teleportation under amplitude damping noise. It was found that the time-fractional Schrodinger equation without fractional operations on the imaginary unit i might be more suitable for describing non-Markovian dynamics in dissipative systems. Our research may provide a new perspective on the time-fractional Schrodinger equation, contributing to a deeper understanding and further development of time-fractional quantum mechanics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Non-Markovian dynamics of time-fractional open quantum systems
    Wei, Dongmei
    Liu, Hailing
    Li, Yongmei
    Wan, Linchun
    Qin, Sujuan
    Wen, Qiaoyan
    Gao, Fei
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [2] Non-Markovian stochastic Schrodinger equation
    Gaspard, P
    Nagaoka, M
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (13): : 5676 - 5690
  • [3] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [4] Non-Markovian fermionic stochastic Schrodinger equation for open system dynamics
    Shi, Wufu
    Zhao, Xinyu
    Yu, Ting
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [5] The non-Markovian stochastic Schrodinger equation unravelling for the position
    Gambetta, J
    Wiseman, HM
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (08) : S821 - S827
  • [6] The non-Markovian stochastic Schrodinger equation for open systems
    Diosi, L
    Strunz, WT
    PHYSICS LETTERS A, 1997, 235 (06) : 569 - 573
  • [7] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
    Ding Bang-Fu
    Wang Xiao-Yun
    Tang Yan-Fang
    Mi Xian-Wu
    Zhao He-Ping
    CHINESE PHYSICS B, 2011, 20 (06)
  • [8] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
    丁邦福
    王小云
    唐艳芳
    米贤武
    赵鹤平
    Chinese Physics B, 2011, (06) : 29 - 33
  • [9] THE GENERALIZED SMOLUCHOWSKI EQUATION AND NON-MARKOVIAN DYNAMICS
    OKUYAMA, S
    OXTOBY, DW
    JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (10): : 5824 - 5829
  • [10] An alternative realization of the exact non-Markovian stochastic Schrodinger equation
    Song, Kai
    Song, Linze
    Shi, Qiang
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (22):