Probabilistic Data-Driven Invariance for Constrained Control of Nonlinear Systems

被引:0
作者
Kashani, Ali [1 ]
Strong, Amy K. [2 ]
Bridgeman, Leila J. [2 ]
Danielson, Claus [1 ]
机构
[1] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
[2] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
基金
美国国家科学基金会;
关键词
Control systems; Switches; Probabilistic logic; Nonlinear systems; Closed loop systems; Aerospace electronics; Uncertainty; Optimization; Mechanical engineering; Measurement; Data-driven control; control of constrained systems; Lyapunov methods; machine learning; STATE; SETS;
D O I
10.1109/LCSYS.2024.3520025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel direct data-driven method for computing constraint-admissible positive invariant sets for general nonlinear systems with compact constraint sets. Our approach employs machine learning techniques to lift the state space and approximate invariant sets using finite data. The invariant sets are parameterized as sub-level-sets of scalar linear functions in the lifted space, which is suitable for control applications. We provide probabilistic guarantees of invariance through scenario optimization, with probability bounds on robustness against the uncertainty inherent in the data-driven framework. As the amount of data increases, these probability bounds approach 1. We use our invariant sets to switch between a collection of controllers to select a controller which enforces constraints. We demonstrate the practicality of our method by applying it to a nonlinear autonomous driving lane-keeping scenario.
引用
收藏
页码:3165 / 3170
页数:6
相关论文
共 21 条
[1]   Lyapunov functionals in complex μ analysis [J].
Balakrishnan, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (09) :1466-1479
[2]   Better bases for radial basis function interpolation problems [J].
Beatson, R. K. ;
Levesley, J. ;
Mouat, C. T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) :434-446
[3]   Data-Driven Model Predictive Control With Stability and Robustness Guarantees [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) :1702-1717
[5]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[6]  
Branges L.D., 1959, Proc. Amer. Math. Soc., V10, P822, DOI [10.1090/S0002-9939-1959-0113131-7, DOI 10.1090/S0002-9939-1959-0113131-7]
[7]   THE EXACT FEASIBILITY OF RANDOMIZED SOLUTIONS OF UNCERTAIN CONVEX PROGRAMS [J].
Campi, M. C. ;
Garatti, S. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) :1211-1230
[8]   A General Scenario Theory for Nonconvex Optimization and Decision Making [J].
Campi, Marco Claudio ;
Garatti, Simone ;
Ramponi, Federico Alessandro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) :4067-4078
[9]   Supervised Learning of Lyapunov Functions Using Laplace Averages of Approximate Koopman Eigenfunctions [J].
Deka, Shankar A. A. ;
Dimarogonas, Dimos V. V. .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :3072-3077
[10]  
Devonport A., 2020, PROC 2 C LEARN DYN C, P7584