Liouville theorems for harmonic maps into CAT(1) spaces

被引:0
作者
Chen, Qun [1 ]
Wang, Jie [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
GEOMETRY;
D O I
10.1007/s00229-025-01622-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Liouville theorems for harmonic maps into metric spaces with curvature bounded above by a constant k>0 in the sense of Alexandrov. Our results generalize a Liouville theorem for harmonic maps from manifolds with non-negative Ricci curvature into CAT(1) space in the recent work (Zhang et al. in Sci China Math 62(11): 2371-2400, 2019) of Zhang-Zhong-Zhu. As a direct corollary, we improve a well-known result of Choi (Proc Amer Math Soc 85(1): 91-94, 1982) for harmonic maps between smooth Riemannian manifolds.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Contracting boundaries of CAT(0) spaces
    Charney, Ruth
    Sultan, Harold
    JOURNAL OF TOPOLOGY, 2015, 8 (01) : 93 - 117
  • [22] Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces
    Di Marino, Simone
    Gigli, Nicola
    Pasqualetto, Enrico
    Soultanis, Elefterios
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) : 7621 - 7685
  • [23] On the geodesic flow on CAT(0) spaces
    Charitos, Charalampos
    Papadoperakis, Ioannis
    Tsapogas, Georgios
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) : 3310 - 3338
  • [24] Correspondence theorems via tropicalizations of moduli spaces
    Gross, Andreas
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (03)
  • [25] Ricci curvature on Alexandrov spaces and rigidity theorems
    Zhang, Hui-Chun
    Zhu, Xi-Ping
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (03) : 503 - 553
  • [26] A Liouville-Type Theorem for Smooth Metric Measure Spaces
    Brighton, Kevin
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 562 - 570
  • [27] A volume decreasing theorem for -harmonic maps and applications
    Zhao, Guangwen
    ARCHIV DER MATHEMATIK, 2018, 110 (06) : 629 - 635
  • [28] Levi Harmonic Maps of Contact Riemannian Manifolds
    Dragomir, Sorin
    Perrone, Domenico
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (03) : 1233 - 1275
  • [29] Harmonic functions on mated-CRT maps
    Gwynne, Ewain
    Miller, Jason
    Sheffield, Scott
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [30] Harmonic maps from super Riemann surfaces
    Ostermayr, Dominik
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 371 - 412