Liouville theorems for harmonic maps into CAT(1) spaces

被引:0
|
作者
Chen, Qun [1 ]
Wang, Jie [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
GEOMETRY;
D O I
10.1007/s00229-025-01622-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Liouville theorems for harmonic maps into metric spaces with curvature bounded above by a constant k>0 in the sense of Alexandrov. Our results generalize a Liouville theorem for harmonic maps from manifolds with non-negative Ricci curvature into CAT(1) space in the recent work (Zhang et al. in Sci China Math 62(11): 2371-2400, 2019) of Zhang-Zhong-Zhu. As a direct corollary, we improve a well-known result of Choi (Proc Amer Math Soc 85(1): 91-94, 1982) for harmonic maps between smooth Riemannian manifolds.
引用
收藏
页数:12
相关论文
共 50 条