Using Large Language Models to Generate Educational Materials on Childhood Glaucoma

被引:3
作者
Dihan, Qais [1 ,2 ]
Chauhan, Muhammad z. [2 ]
Eleiwa, Taher k. [3 ]
Hassan, Amr k. [4 ]
Sallam, Ahmed b. [2 ,5 ]
Khouri, Albert s. [6 ]
Chang, Ta c. [7 ]
Elhusseiny, Abdelrahman m. [2 ,8 ]
机构
[1] Chicago Med Sch, Dept Med, N Chicago, IL USA
[2] Univ Arkansas Med Sci, Harvey & Bernice Jones Eye Inst, Dept Ophthalmol, Little Rock, AR USA
[3] Univ Arkansas Med Sci, Harvey & Bernice Jones Eye Inst, Benha, AR USA
[4] South Valley Univ, Fac Med, Dept Ophthalmol, Qena, Egypt
[5] Ain Shams Univ, Fac Med, Dept Ophthalmol, Cairo, Egypt
[6] Rutgers New Jersey Med Sch, Inst Ophthalmol & Visual Sci ASK, Newark, NJ USA
[7] Univ Miami, Bascom Palmer Eye Inst, Dept Ophthalmol, Miller Sch Med, Miami, FL USA
[8] Harvard Med Sch, Boston Childrens Hosp, Dept Ophthalmol, Boston, MA USA
关键词
FOLLOW-UP; READABILITY; INFORMATION; ADHERENCE; BARRIERS; QUALITY; CARE;
D O I
10.1016/j.ajo.2024.04.004
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To evaluate the quality, readability, and accuracy of large language model (LLM)-generated patient education materials (PEMs) on childhood glaucoma, and their ability to improve existing the readability of online information. Design: Cross-sectional comparative study. Methods: We evaluated responses of ChatGPT-3.5, ChatGPT-4, and Bard to 3 separate prompts requesting that they write PEMs on "childhood glaucoma." Prompt A required PEMs be "easily understandable by the average American." Prompt B required that PEMs be written "at a 6th-grade level using Simple Measure of Gobbledygook (SMOG) readability formula." We then compared responses' quality (DISCERN questionnaire, Patient Education Materials Assessment Tool [PEMAT]), readability (SMOG, Flesch-Kincaid Grade Level [FKGL]), and accuracy (Likert Misinformation scale). To assess the improvement of readability for existing online information, Prompt C requested that LLM rewrite 20 resources from a Google search of keyword "childhood glaucoma" to the American Medical Association-recommended "6th-grade level." Rewrites were compared on key metrics such as readability, complex words (>= 3 syllables), and sentence count. Results: All 3 LLMs generated PEMs that were of high quality, understandability, and accuracy (DISCERN >= 4, >= 70% PEMAT understandability, Misinformation score = 1). Prompt B responses were more readable than Prompt A responses for all 3 LLM (P <= .001). ChatGPT-4 generated the most readable PEMs compared to ChatGPT-3.5 and Bard (P <= .001). Although Prompt C responses showed consistent reduction of mean SMOG and FKGL scores, only ChatGPT-4 achieved the specified 6th-grade reading level (4.8 +/- 0.8 and 3.7 +/- 1.9, respectively). Conclusions:<bold> </bold>LLMs can serve as strong supplemental tools in generating high-quality, accurate, and novel PEMs, and improving the readability of existing PEMs on childhood glaucoma.
引用
收藏
页码:28 / 38
页数:11
相关论文
共 45 条
  • [31] Follow-up Adherence and Barriers to Care for Pediatric Glaucomas at a Tertiary Care Center
    Mikolajczyk, Brian
    Greenberg, Ethan R.
    Fuher, Hannah
    Berres, Michael
    May, Laura L.
    Areaux, Raymond G., Jr.
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2021, 221 : 48 - 54
  • [32] Assessment of Artificial Intelligence Chatbot Responses to Top Searched Queries About Cancer
    Pan, Alexander
    Musheyev, David
    Bockelman, Daniel
    Loeb, Stacy
    Kabarriti, Abdo E.
    [J]. JAMA ONCOLOGY, 2023, 9 (10) : 1437 - 1440
  • [33] Readability Scoring System, 2024, Readability formulas
  • [34] Roose K., 2022, The New York Times
  • [35] A Comprehensive Evaluation of the Quality, Readability, and Technical Quality of Online Information on Glaucoma
    Shah, Ronak
    Mahajan, Jasmine
    Oydanich, Marko
    Khouri, Albert S.
    [J]. OPHTHALMOLOGY GLAUCOMA, 2023, 6 (01): : 93 - 99
  • [36] Development of the Patient Education Materials Assessment Tool (PEMAT): A new measure of understandability and actionability for print and audiovisual patient information
    Shoemaker, Sarah J.
    Wolf, Michael S.
    Brach, Cindy
    [J]. PATIENT EDUCATION AND COUNSELING, 2014, 96 (03) : 395 - 403
  • [37] Large language models encode clinical knowledge
    Singhal, Karan
    Azizi, Shekoofeh
    Tu, Tao
    Mahdavi, S. Sara
    Wei, Jason
    Chung, Hyung Won
    Scales, Nathan
    Tanwani, Ajay
    Cole-Lewis, Heather
    Pfohl, Stephen
    Payne, Perry
    Seneviratne, Martin
    Gamble, Paul
    Kelly, Chris
    Babiker, Abubakr
    Schaerli, Nathanael
    Chowdhery, Aakanksha
    Mansfield, Philip
    Demner-Fushman, Dina
    Arcas, Blaise Aguera y
    Webster, Dale
    Corrado, Greg S.
    Matias, Yossi
    Chou, Katherine
    Gottweis, Juraj
    Tomasev, Nenad
    Liu, Yun
    Rajkomar, Alvin
    Barral, Joelle
    Semturs, Christopher
    Karthikesalingam, Alan
    Natarajan, Vivek
    [J]. NATURE, 2023, 620 (7972) : 172 - +
  • [38] Generative Artificial Intelligence Through ChatGPT and Other Large Language Models in Ophthalmology Clinical Applications and Challenges
    Tan, Ting Fang
    Thirunavukarasu, Arun James
    Campbell, J. Peter
    Keane, Pearse A.
    Pasquale, Louis R.
    Abramoff, Michael D.
    Kalpathy-Cramer, Jayashree
    Lum, Flora
    Kim, Judy E.
    Baxter, Sally L.
    Ting, Daniel Shu Wei
    [J]. OPHTHALMOLOGY SCIENCE, 2023, 3 (04):
  • [39] Barriers to Follow-Up and Strategies to Improve Adherence to Appointments for Care of Chronic Eye Diseases
    Thompson, Atalie C.
    Thompson, Matthew O.
    Young, David L.
    Lin, Richard C.
    Sanislo, Steven R.
    Moshfeghi, Darius M.
    Singh, Kuldev
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (08) : 4324 - 4331
  • [40] AI am a rheumatologist: a practical primer to large language models for rheumatologists
    Venerito, Vincenzo
    Bilgin, Emre
    Iannone, Florenzo
    Kiraz, Sedat
    [J]. RHEUMATOLOGY, 2023, 62 (10) : 3256 - 3260