Multiscale modulation strategy for achieving superior energy storage performance in Ba0.6Sr0.4TiO3 based relaxor ferroelectrics

被引:0
作者
Zhang, Quanbi [1 ]
Yue, Wenfeng [2 ]
Duan, Jiaxin [1 ]
Xu, Guogang [1 ]
Wang, Ge [3 ]
Wang, Xinzhen [1 ]
Wang, Dawei [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266590, Shandong, Peoples R China
[2] Harbin Inst Technol, Sch Instrumentat Sci & Engn, Harbin 150080, Heilongjiang, Peoples R China
[3] Univ Manchester, Dept Mat, Manchester M13 9PL, England
关键词
Relaxor; Energy storage; KTaO3; Dielectric capacitor; MULTILAYER CERAMIC CAPACITORS; DENSITY; PHASE;
D O I
10.1016/j.ceramint.2024.12.151
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Achieving high recoverable energy storage density (W-rec) and efficiency (eta) in relaxor ferroelectric (RFE) ceramics with fatigue resistance and fast charge-discharge behavior remains a significant challenge. In this work, we report a novel lead-free RFE ceramic system, KTaO3 (KT)-modified Ba0.6Sr0.4TiO3 (BST), that exhibits excellent energy storage performance and fatigue-resistance (temperature, frequency, and cyclic poling) stability. The optimum composition, 0.92BST-0.08 KT, demonstrates a high W-rec of 3.91 J cm(-3), an outstanding eta of >87 %, an excellent power density (P-D) of 108.79 MW cm(-3), and an ultra-fast discharge time (t(0.9)) of 18.7 ns. The enhanced energy storage properties are attributed to the synergistic effects of the relaxor ferroelectric behavior, high breakdown strength, and optimized microstructure induced by KT doping. The multiscale modulation strategy employed in this work provides valuable insights into designing high-performance RFE ceramics for energy storage applications.
引用
收藏
页码:7169 / 7177
页数:9
相关论文
共 62 条
  • [1] Wang G., Lu Z.L., Li Y., Li L.H., Ji H.F., Feteira A., Zhou D., Wang D.W., Zhang S.J., Reaney I.M., Electroceramics for high-energy density capacitors: current Status and future perspectives, Chem. Rev., 121, pp. 6124-6172, (2021)
  • [2] Zubairi H., Lu Z., Zhu Y., Reaney I.M., Wang G., Current development, optimisation strategies and future perspectives for lead-free dielectric ceramics in high field and high energy density capacitors, Chem. Soc. Rev., 53, pp. 10761-10790, (2024)
  • [3] Yang B.B., Zhang Y., Pan H., Si W.L., Zhang Q.H., Shen Z.H., Yu Y., Lan S., Meng F.Q., Liu Y.Q., Huang H.B., He J.Q., Gu L., Zhang S.J., Chen L.Q., Zhu J., Nan C.W., Lin Y.H., High-entropy enhanced capacitive energy storage, Nat. Mater., 21, pp. 1074-1080, (2022)
  • [4] Rolison D.R., Long J.W., Lytle J.C., Fischer A.E., Rhodes C.P., McEvoy T.M., Bourg M.E., Lubers A.M., Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., 38, pp. 226-252, (2009)
  • [5] Dai Z., Xie J., Liu W., Wang X., Zhang L., Zhou Z., Li J., Ren X., Effective strategy to achieve excellent energy storage properties in lead-free BaTiO<sub>3</sub>-based bulk ceramics, ACS Appl. Mater. Interfaces, 12, pp. 30289-30296, (2020)
  • [6] Li C., Xiao Y., Fu T., Zheng L., Zheng P., Bai W., Li L., Wen F., Zhang J., Zhang Y., High capacitive performance achieved in NaNbO<sub>3</sub>-based ceramics via grain refinement and relaxation enhancement, Energy. Technol-Ger., 10, (2022)
  • [7] Kim J., Saremi S., Acharya M., Velarde G., Parsonnet E., Donahue P., Qualls A., Garcia D., Martin L.W., Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films, Science, 369, pp. 81-84, (2020)
  • [8] Fan X.H., Wang J., Yuan H., Zheng Z.H., Zhang J., Zhu K.J., Multi-scale synergic optimization strategy for dielectric energy storage ceramics, J. Adv. Ceram., 12, pp. 649-680, (2023)
  • [9] Li D.X., Zeng X.J., Li Z.P., Shen Z.Y., Hao H., Luo W.Q., Wang X.C., Song F.S., Wang Z.M., Li Y.M., Progress and perspectives in dielectric energy storage ceramics, J. Adv. Ceram., 10, pp. 675-703, (2021)
  • [10] Chu Y.H., The superparaelectric battery, Science, 374, pp. 33-34, (2021)