Geometric mean Sylow numbers of nonsolvable groups

被引:0
作者
Anabanti, Chimere Stanley [1 ,3 ,4 ]
Asboei, Alireza Khalili [2 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0028 Pretoria, South Africa
[2] Farhangian Univ, Dept Math Educ, POB 14665-889, Tehran, Iran
[3] Univ Nigeria, Dept Math, Nsukka Unn, Enugu State, Nigeria
[4] Tech Univ Graz TU Graz, Dept Anal & Number Theory, Graz, Austria
关键词
Finite groups; nonsolvable groups; Sylow number; FINITE; SUBGROUPS;
D O I
10.2989/16073606.2025.2459360
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. We write gsn(G) for the geometric mean Sylow number of G. The Fitting subgroup of Gis denoted by F(G). It was recently proved that if gsn(G)<3 root 300, then G is solvable. In this paper, we extend the study to nonsolvable groups. We prove that if G is a finite nonsolvable group, then the following holds: (a) if gsn(G)<5 root 55200 and gsn(G)not equal 4 root 2400, then G/F(G)similar to=A5; (b) if gsn(G) =4 root 2400, then G/N similar to=A5, where N is the largest normal solvable subgroup of G.
引用
收藏
页数:6
相关论文
共 14 条