On formations of soluble finite groups with the Shemetkov property

被引:0
|
作者
Murashka, Viachaslau I. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Fac Math & Technol Programming, Sovetskaya Str 104, Gomel 246019, BELARUS
关键词
Finite group; Schmidt group; Soluble group; Local formation; Formation with the Shemetkov property; <italic>N</italic>-critical graph of a group;
D O I
10.1007/s11587-024-00924-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
L. A. Shemetkov posed a Problem 9.74 in Kourovka Notebook to find all local formations F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document} of finite groups such that every finite minimal non-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document}-group is either a Schmidt group or a group of prime order. All known solutions to this problem are obtained under the assumption that every minimal non-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document}-group is soluble or under the equivalent one. Using the above mentioned solutions we present a polynomial in n time check for a local formation F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document} with bounded pi(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ({\mathfrak {F}})$$\end{document} to be a formation of soluble groups with the Shemtkov property where n=max pi(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=\max \pi ({\mathfrak {F}})$$\end{document}.
引用
收藏
页数:10
相关论文
共 50 条