Quadrotor Fault-Tolerant Control at High Speed: A Model-Based Extended State Observer for Mismatched Disturbance Rejection Approach

被引:1
作者
Chen, Jinfeng [1 ]
Zhang, Fan [1 ,2 ]
Hu, Bin [1 ]
Lin, Qin [1 ,2 ]
机构
[1] Univ Houston, Dept Engn Technol, Houston, TX 77004 USA
[2] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
基金
美国国家科学基金会;
关键词
Quadrotors; Vectors; Rotors; Attitude control; Aerodynamics; Fault tolerant systems; Fault tolerance; Uncertainty; Observers; Symbols; Fault-tolerant control; flight control; extended state observer; mismatched disturbance rejection;
D O I
10.1109/LCSYS.2024.3519033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fault-tolerant control of a quadrotor in extreme conditions, such as rotor failure and strong winds, is exceptionally challenging due to its underactuated nature, strong mismatched disturbances, and highly nonlinear multi-input and multi-output properties. This letter proposes a reduced attitude control approach that combines a model-based extended state observer (MB-ESO) and mismatched disturbance decoupling to control a quadrotor under strong winds and complete loss of two opposing rotors. Our MB-ESO based control provides a new theoretical framework for more general nonlinear systems by utilizing all measurable outputs, thereby maximizing the use of all available information to design a robust controller. Testing in a high-fidelity simulator shows that our approach outperforms the state-of-the-art Incremental Nonlinear Dynamic Inversion method.
引用
收藏
页码:2895 / 2900
页数:6
相关论文
共 19 条
[1]  
Freddi A., Lanzon A., Longhi S., A feedback linearization approach to fault tolerance in quadrotor vehicles, IFAC Proc. Vol., 44, 1, pp. 5413-5418, (2011)
[2]  
Mueller M.W., D'Andrea R., Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers, Proc. IEEE Int. Conf. Robot. Autom., pp. 45-52, (2014)
[3]  
Sun S., Sijbers L., Wang X., De Visser C., High-speed flight of quadrotor despite loss of single rotor, IEEE Robot. Autom. Lett., 3, 4, pp. 3201-3207, (2018)
[4]  
Sun S., Wang X., Chu Q., Visser C.D., Incremental nonlinear fault-tolerant control of a quadrotor with complete loss of two opposing rotors, IEEE Trans. Robot., 37, 1, pp. 116-130, (2021)
[5]  
Nan F., Sun S., Foehn P., Scaramuzza D., Nonlinear MPC for quadrotor fault-tolerant control, IEEE Robot. Autom. Lett., 7, 2, pp. 5047-5054, (2022)
[6]  
Ke C., Cai K., Quan Q., Uniform fault-tolerant control of a Quadcopter with rotor failure, IEEE/ASME Trans. Mechatronics, 28, 1, pp. 507-517, (2023)
[7]  
Ke C., Cai K.-Y., Quan Q., Uniform passive fault-tolerant control of a quadcopter with one, two, or three rotor failure, IEEE Trans. Robot., 39, 6, pp. 4297-4311, (2023)
[8]  
Mueller M.W., D'Andrea R., Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles, Int. J. Robot. Res., 35, 8, pp. 873-889, (2016)
[9]  
Han J., From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 56, 3, pp. 900-906, (2009)
[10]  
Wang C., Li W., Liang M., Event-triggered prescribed performance adaptive fuzzy fault-tolerant control for quadrotor UAV with actuator saturation and failures, IEEE Trans. Aerosp. Electron. Syst., (2024)