Artificial Intelligence Applications for Imaging Metabolic Bone Diseases

被引:1
作者
Isaac, Amanda [1 ]
Akdogan, Asli Irmak [2 ]
Dalili, Danoob [3 ]
Saber, Nuran [4 ]
Drobny, David [1 ]
Guglielmi, Giuseppe [5 ]
Modat, Marc [1 ]
Bazzocchi, Alberto [6 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Izmir Katip Celebi Univ, Ataturk Training & Res Hosp, Izmir, Turkiye
[3] Epsom & St Helier Hosp, London, England
[4] Pamukkale Univ, Denizli, Turkiye
[5] Univ Foggia, Foggia, Italy
[6] Bologna Univ, Dipartimento Sci Med & Chirurg, Bologna, Italy
关键词
artificial intelligence; deep learning; machine learning; natural language processing; computer vision; AGE ASSESSMENT; SPINE; PREDICTION; MODELS; INTERVENTIONS; POPULATION; VALIDATION; FRACTURES; MEDICINE; IMPACT;
D O I
10.1055/s-0044-1789218
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) has significantly impacted the field of medical imaging, particularly in diagnosing and managing metabolic bone diseases (MBDs) such as osteoporosis and osteopenia, Paget's disease, osteomalacia, and rickets, as well as rare conditions such as osteitis fibrosa cystica and osteogenesis imperfecta. This article provides an in-depth analysis of AI techniques used in imaging these conditions, recent advancements, and their clinical applications. It also explores ethical considerations and future perspectives. Through comprehensive examination and case studies, we highlight the transformative potential of AI in enhancing diagnostic accuracy, improving patient outcomes, and contributing to personalized medicine. By integrating AI with existing imaging techniques, we can significantly enhance the capabilities of medical imaging in diagnosing, monitoring, and treating MBDs. We also provide a comprehensive overview of the current state, challenges, and future prospects of AI applications in this crucial area of health care.
引用
收藏
页码:610 / 619
页数:10
相关论文
共 81 条
[11]  
Chen Y, 2024, J MED INTERNET RES, V26, DOI [10.2196/53008, 10.2024/1/e53008]
[12]   Common Skeletal Neoplasms and Nonneoplastic Lesions at 18F-FDG PET/CT [J].
Cheung, Hoiwan ;
Yechoor, Alekhya ;
Behnia, Fatemeh ;
Abadi, Alireza Behrad ;
Khodarahmi, Iman ;
Soltanolkotabi, Maryam ;
Shafiei, Mehrzad ;
Chalian, Majid .
RADIOGRAPHICS, 2022, 42 (01) :250-267
[13]   Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study [J].
Chianca, Vito ;
Cuocolo, Renato ;
Gitto, Salvatore ;
Albano, Domenico ;
Merli, Ilaria ;
Badalyan, Julietta ;
Cortese, Maria Cristina ;
Messina, Carmelo ;
Luzzati, Alessandro ;
Parafioriti, Antonina ;
Galbusera, Fabio ;
Brunetti, Arturo ;
Sconfienza, Luca Maria .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 137
[14]   Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows [J].
Cobo, Miriam ;
Fernandez-Miranda, Pablo Menendez ;
Bastarrika, Gorka ;
Iglesias, Lara Lloret .
SCIENTIFIC DATA, 2023, 10 (01)
[15]   TRIPOD plus AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods [J].
Collins, Gary S. ;
Moons, Karel G. M. ;
Dhiman, Paula ;
Riley, Richard ;
Beam, Andrew L. ;
Van Calster, Ben ;
Ghassemi, Marzyeh ;
Liu, Xiaoxuan ;
Reitsma, Johannes B. ;
van Smeden, Maarten ;
Boulesteix, Anne-Laure ;
Camaradou, Jennifer Catherine ;
Celi, Leo Anthony ;
Denaxas, Spiros ;
Denniston, Alastair K. ;
Glocker, Ben ;
Golub, Robert M. ;
Harvey, Hugh ;
Heinze, Georg ;
Hoffman, Michael M. ;
Kengne, Andre Pascal ;
Lam, Emily ;
Lee, Naomi ;
Loder, Elizabeth W. ;
Maier-Hein, Lena ;
Mateen, Bilal A. ;
McCradden, Melissa ;
Oakden-Rayner, Lauren ;
Ordish, Johan ;
Parnell, Richard ;
Rose, Sherri ;
Singh, Karandeep ;
Wynants, Laure ;
Logullo, Patricia .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 385
[16]   Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis [J].
Compte, Roger ;
Smith, Isabelle Granville ;
Isaac, Amanda ;
Danckert, Nathan ;
McSweeney, Terence ;
Liantis, Panagiotis ;
Williams, Frances M. K. .
EUROPEAN SPINE JOURNAL, 2023, 32 (11) :3764-3787
[17]   How to use statistical models and methods for clinical prediction [J].
Cortese, Giuliana .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (04)
[18]   Towards Personalized Musculoskeletal Interventional Oncology: Enhanced Image- Guided Biopsies and Interventions [J].
Dalili, Danoob ;
Isaac, Amanda ;
Garnon, Julien ;
Cazzato, Roberto Luigi ;
Gangi, Afshin .
SEMINARS IN ROENTGENOLOGY, 2022, 57 (03) :201-211
[19]   Image-guided Sports Medicine and Musculoskeletal Tumor Interventions: A Patient-Centered Model [J].
Dalili, Danoob ;
Isaac, Amanda ;
Rashidi, Ali ;
Astrom, Gunnar ;
Fritz, Jan .
SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (03) :290-309
[20]   The role of body composition assessment in obesity and eating disorders [J].
Dalili, Danoob ;
Bazzocchi, Alberto ;
Dalili, Daniel E. ;
Guglielmi, Giuseppe ;
Isaac, Amanda .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 131