Artificial Intelligence Applications for Imaging Metabolic Bone Diseases

被引:1
作者
Isaac, Amanda [1 ]
Akdogan, Asli Irmak [2 ]
Dalili, Danoob [3 ]
Saber, Nuran [4 ]
Drobny, David [1 ]
Guglielmi, Giuseppe [5 ]
Modat, Marc [1 ]
Bazzocchi, Alberto [6 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Izmir Katip Celebi Univ, Ataturk Training & Res Hosp, Izmir, Turkiye
[3] Epsom & St Helier Hosp, London, England
[4] Pamukkale Univ, Denizli, Turkiye
[5] Univ Foggia, Foggia, Italy
[6] Bologna Univ, Dipartimento Sci Med & Chirurg, Bologna, Italy
关键词
artificial intelligence; deep learning; machine learning; natural language processing; computer vision; AGE ASSESSMENT; SPINE; PREDICTION; MODELS; INTERVENTIONS; POPULATION; VALIDATION; FRACTURES; MEDICINE; IMPACT;
D O I
10.1055/s-0044-1789218
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) has significantly impacted the field of medical imaging, particularly in diagnosing and managing metabolic bone diseases (MBDs) such as osteoporosis and osteopenia, Paget's disease, osteomalacia, and rickets, as well as rare conditions such as osteitis fibrosa cystica and osteogenesis imperfecta. This article provides an in-depth analysis of AI techniques used in imaging these conditions, recent advancements, and their clinical applications. It also explores ethical considerations and future perspectives. Through comprehensive examination and case studies, we highlight the transformative potential of AI in enhancing diagnostic accuracy, improving patient outcomes, and contributing to personalized medicine. By integrating AI with existing imaging techniques, we can significantly enhance the capabilities of medical imaging in diagnosing, monitoring, and treating MBDs. We also provide a comprehensive overview of the current state, challenges, and future prospects of AI applications in this crucial area of health care.
引用
收藏
页码:610 / 619
页数:10
相关论文
共 81 条
[1]   Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis [J].
Aggarwal, Ravi ;
Sounderajah, Viknesh ;
Martin, Guy ;
Ting, Daniel S. W. ;
Karthikesalingam, Alan ;
King, Dominic ;
Ashrafian, Hutan ;
Darzi, Ara .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[2]   ChatGPT versus NASS clinical guidelines for degenerative spondylolisthesis: a comparative analysis [J].
Ahmed, Wasil ;
Saturno, Michael ;
Rajjoub, Rami ;
Duey, Akiro H. ;
Zaidat, Bashar ;
Hoang, Timothy ;
Restrepo Mejia, Mateo ;
Gallate, Zachary S. ;
Shrestha, Nancy ;
Tang, Justin ;
Zapolsky, Ivan ;
Kim, Jun S. ;
Cho, Samuel K. .
EUROPEAN SPINE JOURNAL, 2024, 33 (11) :4182-4203
[3]   A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation [J].
Alukaev, Danis ;
Kiselev, Semen ;
Mustafaev, Tamerlan ;
Ainur, Ahatov ;
Ibragimov, Bulat ;
Vrtovec, Tomaz .
EUROPEAN SPINE JOURNAL, 2022, 31 (08) :2115-2124
[4]   Deep Learning Assistance Closes the Accuracy Gap in Fracture Detection Across Clinician Types [J].
Anderson, Pamela G. ;
Baum, Graham L. ;
Keathley, Nora ;
Sicular, Serge ;
Venkatesh, Srivas ;
Sharma, Anuj ;
Daluiski, Aaron ;
Potter, Hollis ;
Hotchkiss, Robert ;
Lindsey, Robert V. ;
Jones, Rebecca M. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2023, 481 (03) :580-588
[5]   Imaging of Metabolic Bone Diseases: The Spine View, Part II [J].
Aparisi Gomez, Maria Pilar ;
Isaac, Amanda ;
Dalili, Danoob ;
Fotiadou, Anastasia ;
Kariki, Eleni P. ;
Kirschke, Jan S. ;
Krestan, Christian R. ;
Messina, Carmelo ;
Oei, Edwin H. G. ;
Phan, Catherine M. ;
Prakash, Mahesh ;
Sabir, Nuran ;
Tagliafico, Alberto ;
Aparisi, Francisco ;
Baum, Thomas ;
Link, Thomas M. ;
Guglielmi, Giuseppe ;
Bazzocchi, Alberto .
SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2022, 26 (04) :491-500
[6]   A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI [J].
Bandirali, Michele ;
Di Leo, Giovanni ;
Papini, Giacomo Davide Edoardo ;
Messina, Carmelo ;
Sconfienza, Luca Maria ;
Ulivieri, Fabio Massimo ;
Sardanelli, Francesco .
EUROPEAN RADIOLOGY, 2015, 25 (10) :2951-2959
[7]   Imaging of Metabolic Bone Diseases: The Spine View, Part I [J].
Bazzocchi, Alberto ;
Isaac, Amanda ;
Dalili, Danoob ;
Fotiadou, Anastasia ;
Kariki, Eleni P. ;
Kirschke, Jan S. ;
Krestan, Christian R. ;
Messina, Carmelo ;
Oei, Edwin H. G. ;
Phan, Catherine M. ;
Prakash, Mahesh ;
Sabir, Nuran ;
Tagliafico, Alberto ;
Aparisi, Francisco ;
Baum, Thomas ;
Link, Thomas M. ;
Guglielmi, Giuseppe ;
Gomez, Maria Pilar Aparisi .
SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2022, 26 (04) :478-490
[8]   Artificial intelligence in bone age assessment: accuracy and efficiency of a novel fully automated algorithm compared to the Greulich-Pyle method [J].
Booz, Christian ;
Yel, Ibrahim ;
Wichmann, Julian L. ;
Boettger, Sabine ;
Al Kamali, Ahmed ;
Albrecht, Moritz H. ;
Martin, Simon S. ;
Lenga, Lukas ;
Huizinga, Nicole A. ;
D'Angelo, Tommaso ;
Cavallaro, Marco ;
Vogl, Thomas J. ;
Bodelle, Boris .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2020, 4 (01)
[9]   WHOLE BODY AND REGIONAL BONE MINERAL CONTENT AND DENSITY IN WOMEN AGED 20-75 YEARS [J].
Boyanov, M. A. .
ACTA ENDOCRINOLOGICA-BUCHAREST, 2016, 12 (02) :191-196
[10]   Accounting for age in prediction of discharge destination following elective lumbar fusion: a supervised machine learning approach [J].
Cabrera, Andrew ;
Bouterse, Alexander ;
Nelson, Michael ;
Razzouk, Jacob ;
Ramos, Omar ;
Bono, Christopher M. ;
Cheng, Wayne ;
Danisa, Olumide .
SPINE JOURNAL, 2023, 23 (07) :997-1006