X-ray scattering tensor tomography with a random wavefront modulator to study 3D microstructures in archaeological skeletal remains

被引:0
|
作者
Lautizi, Ginevra [1 ,2 ]
Lemmers, Simone A. M. [2 ]
Di Trapani, Vittorio [1 ,2 ]
Schmeltz, Margaux [3 ]
Zdora, Marie-Christine [4 ]
Broche, Ludovic [5 ]
Studer, Alain [6 ]
Marone, Federica [3 ]
Stampanoni, Marco [3 ,7 ]
Thibault, Pierre [1 ,2 ]
机构
[1] Univ Trieste, Dept Phys, I-34127 Trieste, Italy
[2] Elettra Sincrotrone Trieste, I-34149 Basovizza, Italy
[3] Paul Scherrer Inst, Swiss Light Source, Villigen 5232, Switzerland
[4] Monash Univ, Sch Phys & Astron, Clayton Campus, Melbourne, Vic 3800, Australia
[5] ESRF European Synchrotron, F-38043 Grenoble 9, France
[6] Paul Scherrer Inst, Data Proc Dev & Consulting Grp, CH-5232 Villigen, Switzerland
[7] Swiss Fed Inst Technol, Inst Biomed Engn, CH-8092 Zurich, Switzerland
来源
JOURNAL OF INSTRUMENTATION | 2025年 / 20卷 / 02期
基金
欧洲研究理事会;
关键词
Computerized Tomography (CT) and Computed Radiography (CR); Data processing methods; Image reconstruction in medical imaging; Inspection with x-rays; DARK;
D O I
10.1088/1748-0221/20/02/C02028
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present an application of X-ray scattering tensor tomography with a random wavefront modulator to resolve the orientation of microstructures in archaeological skeletal remains. We experimentally investigated two fragments from different tissue types - cortical bone and a root dentine - commonly analyzed in archaeological and palaeoanthropological research. This study hints at the potential to advance methodologies for both archaeological research and clinical applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] 3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis
    Faessel, M
    Delisée, C
    Bos, F
    Castéra, P
    COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (13) : 1931 - 1940
  • [22] In Situ X-ray Tomography and 3D X-ray Diffraction Measurements of Cemented Granular Materials
    C. Zhai
    D. C. Pagan
    R. C. Hurley
    JOM, 2020, 72 : 18 - 27
  • [23] In Situ X-ray Tomography and 3D X-ray Diffraction Measurements of Cemented Granular Materials
    Zhai, C.
    Pagan, D. C.
    Hurley, R. C.
    JOM, 2020, 72 (01) : 18 - 27
  • [24] X-ray 3D Fiber Orientation Tomography via Alternating Optimization of Scattering Coefficients and Directions
    Mori, Tomoki
    Ohtake, Yutaka
    Yatagawa, Tatsuya
    Kido, Kazuhiro
    Tsuboi, Yasunori
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2024, 43 (02)
  • [25] 3D microstructures fabricated by partially opaque X-ray lithography masks
    Cabrini, S
    Gentili, M
    Di Fabrizio, E
    Gerardino, A
    Nottola, A
    Leonard, Q
    Mastrogiacomo, L
    MICROELECTRONIC ENGINEERING, 2000, 53 (1-4) : 599 - 602
  • [26] Tracking of bubbles in liquid foam with 3D X-ray tomography
    Hoppe, Dietrich
    TM-TECHNISCHES MESSEN, 2015, 82 (06) : 323 - 328
  • [27] 3D imaging in material science: Application of X-ray tomography
    Salvo, Luc
    Suery, Michel
    Marmottant, Ariane
    Limodin, Nathalie
    Bernard, Dominique
    COMPTES RENDUS PHYSIQUE, 2010, 11 (9-10) : 641 - 649
  • [28] X-Ray Tomography Crystal Characterization: Automatic 3D Segmentation
    Hypolite, Gautier
    Vicente, Jerome
    Moulin, Philippe
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (03) : 983 - 993
  • [29] 3D characterization of sandstone by means of X-ray computed tomography
    Cnudde, V.
    Boone, M.
    Dewanckele, J.
    Dierick, M.
    Van Hoorebeke, L.
    Jacobs, P.
    GEOSPHERE, 2011, 7 (01): : 54 - 61
  • [30] Automated 3D cytoplasm segmentation in soft X-ray tomography
    Erozan, Ayse
    Loesel, Philipp D.
    Heuveline, Vincent
    Weinhardt, Venera
    ISCIENCE, 2024, 27 (06)