Adaptive Knowledge Matching for Exemplar-Free Class-Incremental Learning

被引:0
|
作者
Chen, Runhang [1 ]
Jing, Xiao-Yuan [1 ,2 ,3 ]
Chen, Haowen [4 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Guangdong Univ Petrochem Technol, Guangdong Prov Key Lab Petrochem Equipment Fault, Maoming 525000, Peoples R China
[3] Guangdong Univ Petrochem Technol, Sch Comp, Maoming 525000, Peoples R China
[4] Informat Engn Univ, Sch Cyber Sci & Engn, Zhengzhou 450001, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT III, PRCV 2024 | 2025年 / 15033卷
关键词
Class-Incremental Learning; Exemplar-Free Class-Incremental Learning; Knowledge Distillation;
D O I
10.1007/978-981-97-8502-5_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exemplar-free class-incremental learning (EFCIL) presents a significant challenge, requiring models to learn tasks sequentially without accessing data from previous tasks. This challenge is exacerbated when the initial dataset is insufficient for facilitating model adaptation to subsequent tasks. Existing methods often employ a joint loss function to improve model adaptability and knowledge retention. However, these methods still face challenges in mitigating forgetting of knowledge from old classes. To address this issue, we propose a new approach called Adaptive Knowledge Matching (AKM). We first adopt a log-cosh loss function to better retain previously learned knowledge. Then, we introduce an adaptive weighting strategy that dynamically balances knowledge from old and new classes. Experiments on benchmark datasets (CIFAR100, Tiny-ImageNet, and ImageNet-Subset) demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
  • [41] Dynamic Task Subspace Ensemble for Class-Incremental Learning
    Zhang, Weile
    He, Yuanjian
    Cong, Yulai
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT II, 2024, 14474 : 322 - 334
  • [42] Class-Incremental Generalized Zero-Shot Learning
    Zhenfeng Sun
    Rui Feng
    Yanwei Fu
    Multimedia Tools and Applications, 2023, 82 : 38233 - 38247
  • [43] FOSTER: Feature Boosting and Compression for Class-Incremental Learning
    Wang, Fu-Yun
    Zhou, Da-Wei
    Ye, Han-Jia
    Zhan, De-Chuan
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 398 - 414
  • [44] Class-incremental learning with Balanced Embedding Discrimination Maximization
    Wei, Qinglai
    Zhang, Weiqin
    NEURAL NETWORKS, 2024, 179
  • [45] Class-Incremental Generalized Zero-Shot Learning
    Sun, Zhenfeng
    Feng, Rui
    Fu, Yanwei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 38233 - 38247
  • [46] Uncertainty-Guided Semi-Supervised Few-Shot Class-Incremental Learning With Knowledge Distillation
    Cui, Yawen
    Deng, Wanxia
    Xu, Xin
    Liu, Zhen
    Liu, Zhong
    Pietikainen, Matti
    Liu, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6422 - 6435
  • [47] AN END-TO-END ARCHITECTURE FOR CLASS-INCREMENTAL OBJECT DETECTION WITH KNOWLEDGE DISTILLATION
    Hao, Yu
    Fu, Yanwei
    Jiang, Yu-Gang
    Tian, Qi
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1 - 6
  • [48] Real-Time Class-Incremental Learning for Voice Command Recognition via Adaptive oiSGNG
    Gutierrez-Huampo, Eulogio
    Barbosa, Danilo S.
    Chuquimia, Orlando
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [49] Federated Class-Incremental Learning With Dynamic Feature Extractor Fusion
    Lu, Yanyan
    Yang, Lei
    Chen, Hao-Rui
    Cao, Jiannong
    Lin, Wanyu
    Long, Saiqin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 12969 - 12982
  • [50] Class-Incremental Learning of Convolutional Neural Networks Based on Double Consolidation Mechanism
    Jin, Leilei
    Liang, Hong
    Yang, Changsheng
    IEEE ACCESS, 2020, 8 : 172553 - 172562