Adaptive Knowledge Matching for Exemplar-Free Class-Incremental Learning

被引:0
|
作者
Chen, Runhang [1 ]
Jing, Xiao-Yuan [1 ,2 ,3 ]
Chen, Haowen [4 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Guangdong Univ Petrochem Technol, Guangdong Prov Key Lab Petrochem Equipment Fault, Maoming 525000, Peoples R China
[3] Guangdong Univ Petrochem Technol, Sch Comp, Maoming 525000, Peoples R China
[4] Informat Engn Univ, Sch Cyber Sci & Engn, Zhengzhou 450001, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT III, PRCV 2024 | 2025年 / 15033卷
关键词
Class-Incremental Learning; Exemplar-Free Class-Incremental Learning; Knowledge Distillation;
D O I
10.1007/978-981-97-8502-5_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exemplar-free class-incremental learning (EFCIL) presents a significant challenge, requiring models to learn tasks sequentially without accessing data from previous tasks. This challenge is exacerbated when the initial dataset is insufficient for facilitating model adaptation to subsequent tasks. Existing methods often employ a joint loss function to improve model adaptability and knowledge retention. However, these methods still face challenges in mitigating forgetting of knowledge from old classes. To address this issue, we propose a new approach called Adaptive Knowledge Matching (AKM). We first adopt a log-cosh loss function to better retain previously learned knowledge. Then, we introduce an adaptive weighting strategy that dynamically balances knowledge from old and new classes. Experiments on benchmark datasets (CIFAR100, Tiny-ImageNet, and ImageNet-Subset) demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
  • [31] Future-proofing class-incremental learning
    Jodelet, Quentin
    Liu, Xin
    Phua, Yin Jun
    Murata, Tsuyoshi
    MACHINE VISION AND APPLICATIONS, 2025, 36 (01)
  • [32] Opportunistic Dynamic Architecture for Class-Incremental Learning
    Rahman, Fahrurrozi
    Rosales Sanabria, Andrea
    Ye, Juan
    IEEE Access, 2025, 13 : 59146 - 59156
  • [33] Sparse personalized federated class-incremental learning
    Liu, Youchao
    Huang, Dingjiang
    INFORMATION SCIENCES, 2025, 706
  • [34] Exemplar-Free Continual Representation Learning via Learnable Drift Compensation
    Gomez-Villa, Alex
    Goswami, Dipam
    Wang, Kai
    Bagdanov, Andrew D.
    Twardowski, Bartlomiej
    van de Weijer, Joost
    COMPUTER VISION-ECCV 2024, PT VII, 2025, 15065 : 473 - 490
  • [35] Knowledge fusion distillation and gradient-based data distillation for class-incremental learning
    Xiong, Lin
    Guan, Xin
    Xiong, Hailing
    Zhu, Kangwen
    Zhang, Fuqing
    NEUROCOMPUTING, 2025, 622
  • [36] A Class-Incremental Learning Method for PCB Defect Detection
    Ge, Quanbo
    Wu, Ruilin
    Wu, Yupei
    Liu, Huaping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [37] PILoRA: Prototype Guided Incremental LoRA for Federated Class-Incremental Learning
    Guo, Haiyang
    Zhu, Fei
    Liu, Wenzhuo
    Zhang, Xu-Yao
    Liu, Cheng-Lin
    COMPUTER VISION - ECCV 2024, PT LXV, 2025, 15123 : 141 - 159
  • [38] iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning
    Fischer, Tom
    Liu, Yaoyao
    Jesslen, Artur
    Ahmed, Noor
    Kaushik, Prakhar
    Wang, Angtian
    Yuille, Alan L.
    Kortylewski, Adam
    Ilg, Eddy
    COMPUTER VISION - ECCV 2024, PT LXXVII, 2024, 15135 : 357 - 374
  • [39] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    NEURAL NETWORKS, 2024, 169 : 307 - 324
  • [40] Class-Incremental Learning with Topological Schemas of Memory Spaces
    Chang, Xinyuan
    Tao, Xiaoyu
    Hong, Xiaopeng
    Wei, Xing
    Ke, Wei
    Gong, Yihong
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9719 - 9726