Adaptive Knowledge Matching for Exemplar-Free Class-Incremental Learning

被引:0
|
作者
Chen, Runhang [1 ]
Jing, Xiao-Yuan [1 ,2 ,3 ]
Chen, Haowen [4 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Guangdong Univ Petrochem Technol, Guangdong Prov Key Lab Petrochem Equipment Fault, Maoming 525000, Peoples R China
[3] Guangdong Univ Petrochem Technol, Sch Comp, Maoming 525000, Peoples R China
[4] Informat Engn Univ, Sch Cyber Sci & Engn, Zhengzhou 450001, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT III, PRCV 2024 | 2025年 / 15033卷
关键词
Class-Incremental Learning; Exemplar-Free Class-Incremental Learning; Knowledge Distillation;
D O I
10.1007/978-981-97-8502-5_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exemplar-free class-incremental learning (EFCIL) presents a significant challenge, requiring models to learn tasks sequentially without accessing data from previous tasks. This challenge is exacerbated when the initial dataset is insufficient for facilitating model adaptation to subsequent tasks. Existing methods often employ a joint loss function to improve model adaptability and knowledge retention. However, these methods still face challenges in mitigating forgetting of knowledge from old classes. To address this issue, we propose a new approach called Adaptive Knowledge Matching (AKM). We first adopt a log-cosh loss function to better retain previously learned knowledge. Then, we introduce an adaptive weighting strategy that dynamically balances knowledge from old and new classes. Experiments on benchmark datasets (CIFAR100, Tiny-ImageNet, and ImageNet-Subset) demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
  • [1] Adaptive Margin Global Classifier for Exemplar-Free Class-Incremental Learning
    Yao, Zhongren
    Chang, Xiaobin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 476 - 489
  • [2] Representation Robustness and Feature Expansion for Exemplar-Free Class-Incremental Learning
    Luo, Yong
    Ge, Hongwei
    Liu, Yuxuan
    Wu, Chunguo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5306 - 5320
  • [3] Less confidence, less forgetting: Learning with a humbler teacher in exemplar-free Class-Incremental learning
    Gao, Zijian
    Xu, Kele
    Zhuang, Huiping
    Liu, Li
    Mao, Xinjun
    Ding, Bo
    Feng, Dawei
    Wang, Huaimin
    NEURAL NETWORKS, 2024, 179
  • [4] Self-distilled Knowledge Delegator for Exemplar-free Class Incremental Learning
    Ye, Fanfan
    Ma, Liang
    Zhong, Qiaoyong
    Xie, Di
    Pu, Shiliang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [5] Multi-view prototype balance and temporary proxy constraint for exemplar-free class-incremental learning
    Tian, Heng
    Zhang, Qian
    Wang, Zhe
    Zhang, Yu
    Xu, Xinlei
    Fu, Zhiling
    APPLIED INTELLIGENCE, 2025, 55 (05)
  • [6] Efficient Statistical Sampling Adaptation for Exemplar-Free Class Incremental Learning
    Cheng, De
    Zhao, Yuxin
    Wang, Nannan
    Li, Guozhang
    Zhang, Dingwen
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 11451 - 11463
  • [7] Rotation Augmented Distillation for Exemplar-Free Class Incremental Learning with Detailed Analysis
    Chen, Xiuwei
    Chang, Xiaobin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 27 - 38
  • [8] Non-Exemplar Class-Incremental Learning via Adaptive Old Class Reconstruction
    Wang, Shaokun
    Shi, Weiwei
    He, Yuhang
    Yu, Yifan
    Gong, Yihong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 4524 - 4534
  • [9] Semantic Knowledge Guided Class-Incremental Learning
    Wang, Shaokun
    Shi, Weiwei
    Dong, Songlin
    Gao, Xinyuan
    Song, Xiang
    Gong, Yihong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5921 - 5931
  • [10] Class-Incremental Learning via Knowledge Amalgamation
    de Carvalho, Marcus
    Pratama, Mahardhika
    Zhang, Jie
    Sun, Yajuan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 36 - 50