Experimental Emulator of Pulse Dynamics in Fractional Nonlinear Schrödinger Equation

被引:1
作者
Liu, Shilong [1 ,2 ]
Zhang, Yingwen [3 ,4 ]
Virally, Stephane [5 ]
Karimi, Ebrahim [3 ,4 ]
Malomed, Boris A. [6 ,7 ,8 ]
Seletskiy, Denis V. [5 ]
机构
[1] Polytech Montreal, Dept Engn Phys, FemtoQ Lab, Montreal, PQ H3T 1J4, Canada
[2] Tempo Opt Inc, Montreal, PQ H3T 1W9, Canada
[3] Univ Ottawa, Dept Phys, 25 Templeton, Ottawa, ON K1N 6N5, Canada
[4] Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[5] Polytech Montreal, Engn Phys Dept, FemtoQ Lab, Montreal, PQ H3T 1J4, Canada
[6] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[7] Tel Aviv Univ, Ctr Light Matter Interact, IL-69978 Tel Aviv, Israel
[8] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
基金
以色列科学基金会;
关键词
fractional nonlinear schr & ouml; dinger equation; fractional soliton; mode-locked fiber laser; pulse shaper; SCHRODINGER-EQUATION; SUPERCONTINUUM GENERATION; MODE-LOCKING; SOLITONS; PHASE; SYMMETRY; STATES;
D O I
10.1002/lpor.202401714
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A nonlinear optical platform is presented to emulate a nonlinear L & eacute;vy waveguide that supports the pulse propagation governed by a generalized fractional nonlinear Schr & ouml;dinger equation (FNLSE). This approach distinguishes between intra-cavity and extra-cavity regimes, exploring the interplay between the effective fractional group-velocity dispersion (FGVD) and Kerr nonlinearity. In the intra-cavity configuration, stable fractional solitons enabled by an engineered combination of the fractional and regular dispersions in the fiber cavity are observed. The soliton pulses exhibit their specific characteristics, viz., "heavy tails" and a "spectral valley" in the temporal and frequency domain, respectively, highlighting the effective nonlocality introduced by FGVD. Further investigation in the extra-cavity regime reveals the generation of spectral valleys with multiple lobes, offering potential applications to the design of high-dimensional data encoding. To elucidate the spectral valleys arising from the interplay of FGVD and nonlinearity, an innovative "force" model supported by comprehensive numerical analysis is developed. These findings open new avenues for experimental studies of spectral-temporal dynamics in fractional nonlinear systems.
引用
收藏
页数:11
相关论文
共 71 条
  • [1] Agrawal GP, 2000, LECT NOTES PHYS, V542, P195
  • [2] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [3] Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings
    Ansari, Vahid
    Donohue, John M.
    Brecht, Benjamin
    Silberhorn, Christine
    [J]. OPTICA, 2018, 5 (05): : 534 - 550
  • [4] Controlling the phase evolution of few-cycle light pulses
    Apolonski, A
    Poppe, A
    Tempea, G
    Spielmann, C
    Udem, T
    Holzwarth, R
    Hänsch, TW
    Krausz, F
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (04) : 740 - 743
  • [5] Atangana A, 2016, Arxiv, DOI arXiv:1602.03408
  • [6] Definition of the Riesz derivative and its application to space fractional quantum mechanics
    Bayin, Selcuk S.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
  • [7] Fractal photonic topological insulators
    Biesenthal, Tobias
    Maczewsky, Lukas J.
    Yang, Zhaoju
    Kremer, Mark
    Segev, Mordechai
    Szameit, Alexander
    Heinrich, Matthias
    [J]. SCIENCE, 2022, 376 (6597) : 1114 - +
  • [8] Boscolo S., 2017, Shaping Light in Nonlinear Optical Fibers
  • [9] Chen J., 2020, Chaos: An Interdisc. J. Nonlin. Sci, V30, P6
  • [10] Optical solitons, self-focusing, and wave collapse in a space-fractional Schrodinger equation with a Kerr-type nonlinearity
    Chen, Manna
    Zeng, Shihao
    Lu, Daquan
    Hu, Wei
    Guo, Qi
    [J]. PHYSICAL REVIEW E, 2018, 98 (02)