Artificial Intelligence in Spinal Imaging and Patient Care: A Review of Recent Advances

被引:12
作者
Lee, Sungwon [1 ,2 ]
Jung, Joon-Yong [1 ,2 ]
Mahatthanatrakul, Akaworn [3 ]
Kim, Jin-Sung [4 ]
机构
[1] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Dept Radiol, Seoul, South Korea
[2] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Visual Anal & Learning Improved Diagnost VALID, 222 Banpo Daero, Seoul 06591, South Korea
[3] Naresuan Univ Hosp, Dept Orthopaed, Fac Med, Phitsanulok, Thailand
[4] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Neurosurg,Spine Ctr, Seoul, South Korea
关键词
Artificial intelligence; Machine learning; Deep learning; Spine; Patient care; Clinical decision-making; DEEP-LEARNING-MODEL; AUTOMATED DETECTION; SURGERY; MRI; CT; CLASSIFICATION; STENOSIS; RECONSTRUCTION; SEGMENTATION; PERFORMANCE;
D O I
10.14245/ns.2448388.194
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Artificial intelligence (AI) is transforming spinal imaging and patient care through automated analysis and enhanced decision-making. This review presents a clinical task-based evaluation, highlighting the specific impact of AI techniques on different aspects of spinal imaging and patient care. We first discuss how AI can potentially improve image quality through techniques like denoising or artifact reduction. We then explore how AI enables efficient quantification of anatomical measurements, spinal curvature parameters, vertebral segmentation, and disc grading. This facilitates objective, accurate interpretation and diagnosis. AI models now reliably detect key spinal pathologies, achieving expert-level performance in tasks like identifying fractures, stenosis, infections, and tumors. Beyond diagnosis, AI also assists surgical planning via synthetic computed tomography generation, augmented reality systems, and robotic guidance. Furthermore, AI image analysis combined with clinical data enables personalized predictions to guide treatment decisions, such as forecasting spine surgery outcomes. However, challenges still need to be addressed in implementing AI clinically, including model interpretability, generalizability, and data limitations. Multicenter collaboration using large, diverse datasets is critical to advance the field further. While adoption barriers persist, AI presents a transformative opportunity to revolutionize spinal imaging workflows, empowering clinicians to translate data into actionable insights for improved patient care.
引用
收藏
页码:474 / 486
页数:13
相关论文
共 139 条
[61]   Automated Vertebral Segmentation and Measurement of Vertebral Compression Ratio Based on Deep Learning in X-Ray Images [J].
Kim, Dong Hyun ;
Jeong, Jin Gyo ;
Kim, Young Jae ;
Kim, Kwang Gi ;
Jeon, Ji Young .
JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) :853-861
[62]   Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion [J].
Kim, Jun S. ;
Merrill, Robert K. ;
Arvind, Varun ;
Kaji, Deepak ;
Pasik, Sara D. ;
Nwachukwu, Chuma C. ;
Vargas, Luilly ;
Osman, Nebiyu S. ;
Oermann, Eric K. ;
Caridi, John M. ;
Cho, Samuel K. .
SPINE, 2018, 43 (12) :853-860
[63]   Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation [J].
Kim, Kang Cheol ;
Cho, Hyun Cheol ;
Jang, Tae Jun ;
Choi, Jong Mun ;
Seo, Jin Keun .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 200
[64]   Performance of the deep convolutional neural network based magnetic resonance image scoring algorithm for differentiating between tuberculous and pyogenic spondylitis [J].
Kim, Kiwook ;
Kim, Sungwon ;
Lee, Young Han ;
Lee, Seung Hyun ;
Lee, Hye Sun ;
Kim, Sungjun .
SCIENTIFIC REPORTS, 2018, 8
[65]   Diagnostic triage in patients with central lumbar spinal stenosis using a deep learning system of radiographs [J].
Kim, Tackeun ;
Kim, Young-Gon ;
Park, Seyeon ;
Lee, Jae-Koo ;
Lee, Chang-Hyun ;
Hyun, Seung-Jae ;
Kim, Chi Heon ;
Kim, Ki-Jeong ;
Chung, Chun Kee .
JOURNAL OF NEUROSURGERY-SPINE, 2022, 37 (01) :104-111
[66]   BUU-LSPINE: A Thai Open Lumbar Spine Dataset for Spondylolisthesis Detection [J].
Klinwichit, Podchara ;
Yookwan, Watcharaphong ;
Limchareon, Sornsupha ;
Chinnasarn, Krisana ;
Jang, Jun-Su ;
Onuean, Athita .
APPLIED SCIENCES-BASEL, 2023, 13 (15)
[67]   Development of a Spine X-Ray-Based Fracture Prediction Model Using a Deep Learning Algorithm [J].
Kong, Sung Hye ;
Lee, Jae-Won ;
Bae, Byeong Uk ;
Sung, Jin Kyeong ;
Jung, Kyu Hwan ;
Kim, Jung Hee ;
Shin, Chan Soo .
ENDOCRINOLOGY AND METABOLISM, 2022, 37 (04) :674-683
[68]   Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI [J].
Lang, Ning ;
Zhang, Yang ;
Zhang, Enlong ;
Zhang, Jiahui ;
Chow, Daniel ;
Chang, Peter ;
Yu, Hon J. ;
Yuan, Huishu ;
Su, Min-Ying .
MAGNETIC RESONANCE IMAGING, 2019, 64 :4-12
[69]   Performance of the Winning Algorithms of the RSNA 2022 Cervical Spine Fracture Detection Challenge [J].
Lee, Ghee Rye ;
Flanders, Adam E. ;
Richards, Tyler ;
Kitamura, Felipe ;
Colak, Errol ;
Lin, Hui Ming ;
Ball, Robyn L. ;
Talbott, Jason ;
Prevedello, Luciano M. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (01)
[70]   Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph [J].
Lee, Gun Woo ;
Shin, Hyunkwang ;
Chang, Min Cheol .
BMC NEUROLOGY, 2022, 22 (01)