Artificial Intelligence in Spinal Imaging and Patient Care: A Review of Recent Advances

被引:12
作者
Lee, Sungwon [1 ,2 ]
Jung, Joon-Yong [1 ,2 ]
Mahatthanatrakul, Akaworn [3 ]
Kim, Jin-Sung [4 ]
机构
[1] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Dept Radiol, Seoul, South Korea
[2] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Visual Anal & Learning Improved Diagnost VALID, 222 Banpo Daero, Seoul 06591, South Korea
[3] Naresuan Univ Hosp, Dept Orthopaed, Fac Med, Phitsanulok, Thailand
[4] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Neurosurg,Spine Ctr, Seoul, South Korea
关键词
Artificial intelligence; Machine learning; Deep learning; Spine; Patient care; Clinical decision-making; DEEP-LEARNING-MODEL; AUTOMATED DETECTION; SURGERY; MRI; CT; CLASSIFICATION; STENOSIS; RECONSTRUCTION; SEGMENTATION; PERFORMANCE;
D O I
10.14245/ns.2448388.194
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Artificial intelligence (AI) is transforming spinal imaging and patient care through automated analysis and enhanced decision-making. This review presents a clinical task-based evaluation, highlighting the specific impact of AI techniques on different aspects of spinal imaging and patient care. We first discuss how AI can potentially improve image quality through techniques like denoising or artifact reduction. We then explore how AI enables efficient quantification of anatomical measurements, spinal curvature parameters, vertebral segmentation, and disc grading. This facilitates objective, accurate interpretation and diagnosis. AI models now reliably detect key spinal pathologies, achieving expert-level performance in tasks like identifying fractures, stenosis, infections, and tumors. Beyond diagnosis, AI also assists surgical planning via synthetic computed tomography generation, augmented reality systems, and robotic guidance. Furthermore, AI image analysis combined with clinical data enables personalized predictions to guide treatment decisions, such as forecasting spine surgery outcomes. However, challenges still need to be addressed in implementing AI clinically, including model interpretability, generalizability, and data limitations. Multicenter collaboration using large, diverse datasets is critical to advance the field further. While adoption barriers persist, AI presents a transformative opportunity to revolutionize spinal imaging workflows, empowering clinicians to translate data into actionable insights for improved patient care.
引用
收藏
页码:474 / 486
页数:13
相关论文
共 139 条
[21]   Improving Surgical Triage in Spine Clinic: Predicting Likelihood of Surgery Using Machine Learning [J].
Broida, Samuel E. ;
Schrum, Mariah L. ;
Yoon, Eric ;
Sweeney, Aidan P. ;
Dhruv, Neil N. ;
Gombolay, Matthew C. ;
Yoon, Sangwook T. .
WORLD NEUROSURGERY, 2022, 163 :E192-E198
[22]   Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images [J].
Burns, Joseph E. ;
Yao, Jianhua ;
Summers, Ronald M. .
RADIOLOGY, 2017, 284 (03) :788-797
[23]   Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography [J].
Burstroem, Gustav ;
Buerger, Christian ;
Hoppenbrouwers, Jurgen ;
Nachabe, Rami ;
Lorenz, Cristian ;
Babic, Drazenko ;
Homan, Robert ;
Racadio, John M. ;
Grass, Michael ;
Persson, Oscar ;
Edstrom, Erik ;
Terander, Adrian Elmi .
JOURNAL OF NEUROSURGERY-SPINE, 2019, 31 (01) :147-154
[24]   The Role of Machine Learning in Spine Surgery: The Future Is Now [J].
Chang, Michael ;
Canseco, Jose A. ;
Nicholson, Kristen J. ;
Patel, Neil ;
Vaccaro, Alexander R. .
FRONTIERS IN SURGERY, 2020, 7
[25]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[26]   Super-resolution musculoskeletal MRI using deep learning [J].
Chaudhari, Akshay S. ;
Fang, Zhongnan ;
Kogan, Feliks ;
Wood, Jeff ;
Stevens, Kathryn J. ;
Gibbons, Eric K. ;
Lee, Jin Hyung ;
Gold, Garry E. ;
Hargreaves, Brian A. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) :2139-2154
[27]   Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs [J].
Chen, Hsuan-Yu ;
Hsu, Benny Wei-Yun ;
Yin, Yu-Kai ;
Lin, Feng-Huei ;
Yang, Tsung-Han ;
Yang, Rong-Sen ;
Lee, Chih-Kuo ;
Tseng, Vincent S. .
PLOS ONE, 2021, 16 (01)
[28]   A deep-learning model for identifying fresh vertebral compression fractures on digital radiography [J].
Chen, Weijuan ;
Liu, Xi ;
Li, Kunhua ;
Luo, Yin ;
Bai, Shanwei ;
Wu, Jiangfen ;
Chen, Weidao ;
Dong, Mengxing ;
Guo, Dajing .
EUROPEAN RADIOLOGY, 2022, 32 (03) :1496-1505
[29]   Risk factors of instrumentation failure after laminectomy and posterior cervical fusions (PCF) [J].
Chen, Zejun ;
Lv, Guohua ;
Zhang, Ou ;
Li, Yunchao ;
Wang, Xiaoxiao ;
He, Haoyu ;
Yuan, Hui ;
Pan, Changyu ;
Kuang, Lei .
BMC MUSCULOSKELETAL DISORDERS, 2024, 25 (01)
[30]   The use of deep learning in medical imaging to improve spine care: A scoping review of current literature and clinical applications [J].
Constant, Caroline ;
Aubin, Carl-Eric ;
Kremers, Hilal Maradit ;
Garcia, Diana V. Vera ;
Wyles, Cody C. ;
Rouzrokh, Pouria ;
Larson, Annalise Noelle .
NORTH AMERICAN SPINE SOCIETY JOURNAL, 2023, 15