Artificial Intelligence in Spinal Imaging and Patient Care: A Review of Recent Advances

被引:12
作者
Lee, Sungwon [1 ,2 ]
Jung, Joon-Yong [1 ,2 ]
Mahatthanatrakul, Akaworn [3 ]
Kim, Jin-Sung [4 ]
机构
[1] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Dept Radiol, Seoul, South Korea
[2] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Visual Anal & Learning Improved Diagnost VALID, 222 Banpo Daero, Seoul 06591, South Korea
[3] Naresuan Univ Hosp, Dept Orthopaed, Fac Med, Phitsanulok, Thailand
[4] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Neurosurg,Spine Ctr, Seoul, South Korea
关键词
Artificial intelligence; Machine learning; Deep learning; Spine; Patient care; Clinical decision-making; DEEP-LEARNING-MODEL; AUTOMATED DETECTION; SURGERY; MRI; CT; CLASSIFICATION; STENOSIS; RECONSTRUCTION; SEGMENTATION; PERFORMANCE;
D O I
10.14245/ns.2448388.194
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Artificial intelligence (AI) is transforming spinal imaging and patient care through automated analysis and enhanced decision-making. This review presents a clinical task-based evaluation, highlighting the specific impact of AI techniques on different aspects of spinal imaging and patient care. We first discuss how AI can potentially improve image quality through techniques like denoising or artifact reduction. We then explore how AI enables efficient quantification of anatomical measurements, spinal curvature parameters, vertebral segmentation, and disc grading. This facilitates objective, accurate interpretation and diagnosis. AI models now reliably detect key spinal pathologies, achieving expert-level performance in tasks like identifying fractures, stenosis, infections, and tumors. Beyond diagnosis, AI also assists surgical planning via synthetic computed tomography generation, augmented reality systems, and robotic guidance. Furthermore, AI image analysis combined with clinical data enables personalized predictions to guide treatment decisions, such as forecasting spine surgery outcomes. However, challenges still need to be addressed in implementing AI clinically, including model interpretability, generalizability, and data limitations. Multicenter collaboration using large, diverse datasets is critical to advance the field further. While adoption barriers persist, AI presents a transformative opportunity to revolutionize spinal imaging workflows, empowering clinicians to translate data into actionable insights for improved patient care.
引用
收藏
页码:474 / 486
页数:13
相关论文
共 139 条
[1]   Boundary Delineation of MRI Images for Lumbar Spinal Stenosis Detection lough Semantic Segmentation Using Deep Neural Networks [J].
Al-Kafri, Ala S. ;
Sudirman, Sud ;
Hussain, Abir ;
Al-Jumeily, Dhiya ;
Natalia, Friska ;
Meidia, Hira ;
Afriliana, Nunik ;
Al-Rashdan, Wasfi ;
Bashtawi, Mohammad ;
Al-Jumaily, Mohammed .
IEEE ACCESS, 2019, 7 :43487-43501
[2]   Deep Learning Reconstruction for Accelerated Spine MRI: Prospective Analysis of Interchangeability [J].
Almansour, Haidara ;
Herrmann, Judith ;
Gassenmaier, Sebastian ;
Afat, Saif ;
Jacoby, Johann ;
Koerzdoerfer, Gregor ;
Nickel, Dominik ;
Mostapha, Mahmoud ;
Nadar, Mariappan ;
Othman, Ahmed E. .
RADIOLOGY, 2023, 306 (03)
[3]   A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation [J].
Alukaev, Danis ;
Kiselev, Semen ;
Mustafaev, Tamerlan ;
Ainur, Ahatov ;
Ibragimov, Bulat ;
Vrtovec, Tomaz .
EUROPEAN SPINE JOURNAL, 2022, 31 (08) :2115-2124
[4]   Artificial Intelligence Based Hierarchical Clustering of Patient Types and Intervention Categories in Adult Spinal Deformity Surgery Towards a New Classification Scheme that Predicts Quality and Value [J].
Ames, Christopher P. ;
Smith, Justin S. ;
Pellise, Ferran ;
Kelly, Michael ;
Alanay, Ahmet ;
Acaroglu, Emre ;
Sanchez Perez-Grueso, Francisco Javier ;
Kleinstuck, Frank ;
Obeid, Ibrahim ;
Vila-Casademunt, Alba ;
Shaffrey, Christopher I., Jr. ;
Burton, Douglas ;
Lafage, Virginie ;
Schwab, Frank ;
Shaffrey Sr, Christopher I. Sr ;
Bess, Shay ;
Serra-Burriel, Miguel .
SPINE, 2019, 44 (13) :915-926
[5]   Does Sarcopenia Increase the Risk for Fresh Vertebral Fragility Fractures?: A Case-Control Study [J].
Anand, Ashish ;
Shetty, Ajoy Prasad ;
Renjith, K. R. ;
Anand, Sri Vijay K. S. ;
Kanna, Rishi Mugesh ;
Rajasekaran, Shanmuganathan .
ASIAN SPINE JOURNAL, 2020, 14 (01) :17-24
[6]  
[Anonymous], 85. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Fe 29 - Identifier NCT01976494, The Efficacy and Safety of Accufuser Omnibus
[7]  
Comparative Clinical Trial
[8]  
2013 Nov 5 [cited 2020 Jan 18]
[9]  
[about 3 screens]. Available from: https://clinicaltrials.gov/ct2/show/NCT01976494
[10]   On instabilities of deep learning in image reconstruction and the potential costs of AI [J].
Antun, Vegard ;
Renna, Francesco ;
Poon, Clarice ;
Adcock, Ben ;
Hansen, Anders C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) :30088-30095