Pinching results for bi-slant submanifolds in trans-Sasakian manifolds

被引:0
作者
Massamba, Fortune [1 ]
Mihai, Ion [2 ]
Mohammed, Mohammed [1 ,3 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Private Bag X01, ZA-3209 Scottsville, South Africa
[2] Univ Bucharest, Dept Math, Bucharest, Romania
[3] Al Neelain Univ, Fac Math Sci & Stat, Dept Math, Khartoum 11121, Sudan
基金
新加坡国家研究基金会;
关键词
Chen first invariant; squared mean curvature; Ricci curvature; trans-Sasakian-manifolds; bislant submanifolds; SPACE; INEQUALITY;
D O I
10.2298/FIL2423081M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, we consider bi-slant submanifolds in trans-Sasakian generalized Sasakian space forms. Specifically, we establish both the Chen first inequality and the Chen-Ricci inequality on such submanifolds. We provide an example of bi-slant submanifold.
引用
收藏
页码:8081 / 8096
页数:16
相关论文
共 17 条
[1]  
Aktan N, 2008, BALK J GEOM APPL, V13, P1
[2]   Generalized Sasakian-space-forms [J].
Alegre, P ;
Blair, DE ;
Carriazo, A .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 141 (1) :157-183
[3]  
Alegre P, 2007, INDIAN J PURE AP MAT, V38, P185
[4]   Structures on generalized Sasakian-space-forms [J].
Alegre, Pablo ;
Carriazo, Alfonso .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (06) :656-666
[5]   Semi-slant submanifolds of a Sasakian manifold [J].
Cabrerizo, JL ;
Carriazo, A ;
Fernández, LM ;
Fernández, M .
GEOMETRIAE DEDICATA, 1999, 78 (02) :183-199
[6]  
Chen B. Y., 1973, GEOMETRY SUBMANIFOLD
[7]  
Chen B.-Y., 2011, Pseudo-Riemannian geometry, [delta]-invariants and applications
[8]   Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions [J].
Chen, BY .
GLASGOW MATHEMATICAL JOURNAL, 1999, 41 :33-41
[9]   SOME PINCHING AND CLASSIFICATION-THEOREMS FOR MINIMAL SUBMANIFOLDS [J].
CHEN, BY .
ARCHIV DER MATHEMATIK, 1993, 60 (06) :568-578
[10]  
Gupta, 2013, SARAJEVO J MATH, V9, P117, DOI [10.5644/SJM.09.1.11, DOI 10.5644/SJM.09.1.11]