Systematic metabolic engineering enables highly efficient production of vitamin A in Saccharomyces cerevisiae

被引:7
作者
Shi, Yi [1 ,2 ,3 ]
Lu, Shuhuan [4 ]
Zhou, Xiao [1 ,2 ,3 ]
Wang, Xinhui [1 ,2 ,3 ]
Zhang, Chenglong [1 ,2 ,3 ]
Wu, Nan [1 ,2 ,3 ]
Dong, Tianyu [1 ,2 ,3 ]
Xing, Shilong [1 ,2 ,3 ]
Wang, Ying [1 ,2 ,3 ]
Xiao, Wenhai [1 ,2 ,3 ,5 ,6 ]
Yao, Mingdong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Frontier Sci Ctr Synthet Biol, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Syst Bioengn, Minist Educ, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Frontier Res Inst Synthet Biol, Tianjin, Peoples R China
[4] CABIO Bioengn Wuhan Co Ltd, Wuhan 430075, Peoples R China
[5] Tianjin Univ, Fac Med, Sch Life Sci, Tianjin, Peoples R China
[6] Tianjin Univ, Georgia Tech Shenzhen Inst, Shenzhen 518071, Peoples R China
基金
中国国家自然科学基金;
关键词
Vitamin A; Isozyme; Retinol; Metabolic engineering; Cofactor engineering; Saccharomyces cerevisiae; BETA-CAROTENE; REACTION-MECHANISM; NADH KINASE; HUMAN SKIN; YEAST; BIOSYNTHESIS; ACID; IDENTIFICATION; EXPRESSION; CONVERSION;
D O I
10.1016/j.synbio.2024.08.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Vitamin A is a micronutrient critical for versatile biological functions and has been widely used in the food, cosmetics, pharmaceutical, and nutraceutical industries. Synthetic biology and metabolic engineering enable microbes, especially the model organism Saccharomyces cerevisiae (generally recognised as safe) to possess great potential for the production of vitamin A. Herein, we first generated a vitamin A-producing strain by mining beta-carotene 15,15 '-mono(di)oxygenase from different sources and identified two isoenzymes Mbblh and Ssbco with comparable catalytic properties but different catalytic mechanisms. Combinational expression of isoenzymes increased the flux from beta-carotene to vitamin A metabolism. To modulate the vitamin A components, retinol dehydrogenase 12 from Homo sapiens was introduced to achieve more than 90 % retinol purity using shake flask fermentation. Overexpressing POS5 Delta 17 enhanced the reduced nicotinamide adenine dinucleotide phosphate pool, and the titer of vitamin A was elevated by almost 46 %. Multi-copy integration of the key rate-limiting step gene Mbblh further improved the synthesis of vitamin A. Consequently, the titer of vitamin A in the strain harbouring the Ura3 marker was increased to 588 mg/L at the shake-flask level. Eventually, the highest reported titer of 5.21 g/L vitamin A in S. cerevisiae was achieved in a 1-L bioreactor. This study unlocked the potential of S. cerevisiae for synthesising vitamin A in a sustainable and economical way, laying the foundation for the commercial-scale production of bio-based vitamin A.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 56 条
[1]  
Akhtar S, 2013, J HEALTH POPUL NUTR, V31, P413
[2]   Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment [J].
Bachosz, Karolina ;
Zdarta, Jakub ;
Bilal, Muhammad ;
Meyer, Anne S. ;
Jesionowski, Teofil .
SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 868
[3]   Reaction mechanism of apocarotenoid oxygenase (ACO): A DFT study [J].
Borowski, Tomasz ;
Blomberg, Margareta R. A. ;
Siegbahn, Per E. M. .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (07) :2264-2276
[4]   Co-expression of lipase isozymes for enhanced expression in Pichia pastoris [J].
Cai, H. ;
Zhang, T. ;
Zhao, M. ;
Mao, J. ;
Cai, C. ;
Feng, F. .
LETTERS IN APPLIED MICROBIOLOGY, 2017, 65 (04) :335-342
[5]   Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis [J].
Cardenas, Javier ;
Da Silva, Nancy A. .
METABOLIC ENGINEERING, 2016, 36 :80-89
[6]   Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast [J].
Chang, Jui-Jen ;
Thia, Caroline ;
Lin, Hao-Yeh ;
Liu, Hsien-Lin ;
Ho, Feng-Ju ;
Wu, Jiunn-Tzong ;
Shih, Ming-Che ;
Li, Wen-Hsiung ;
Huang, Chieh-Chen .
BIORESOURCE TECHNOLOGY, 2015, 184 :2-8
[7]   Vitamin A: History, Current Uses, and Controversies [J].
Chapman, M. Shane .
SEMINARS IN CUTANEOUS MEDICINE AND SURGERY, 2012, 31 (01) :11-16
[8]   Associating protein activities with their genes:: rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae [J].
Chen, CN ;
Porubleva, L ;
Shearer, G ;
Svrakic, M ;
Holden, LG ;
Dover, JL ;
Johnston, M ;
Chitnis, PR ;
Kohl, DH .
YEAST, 2003, 20 (06) :545-554
[9]   CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens [J].
Concordet, Jean-Paul ;
Haeussler, Maximilian .
NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) :W242-W245
[10]   Vitamin A Metabolism: An Update [J].
D'Ambrosio, Diana N. ;
Clugston, Robin D. ;
Blaner, William S. .
NUTRIENTS, 2011, 3 (01) :63-103