Dry carbon nanotube wrapping of Ni-rich layered oxide cathodes for lithium-ion batteries

被引:0
|
作者
Ho, Van-Chuong [1 ]
Huynh, Thanh N. [2 ]
Jung, Hun-Gi [3 ,4 ]
Kim, Jung Ho [5 ]
Oh, Seung-Min [6 ]
Kim, Young-Jun [2 ,7 ]
Mun, Junyoung [1 ,3 ,4 ,8 ]
机构
[1] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 2066, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nano Technol SAINT, Suwon, South Korea
[3] Korea Inst Sci & Technol, Energy Storage Res Ctr, Seoul 02792, South Korea
[4] Sungkyunkwan Univ, KIST SKKU Carbon Neutral Res Ctr, Suwon 16419, South Korea
[5] Univ Wollongong, Inst Superconducting & Elect Mat, Fac Engn & Informat Sci, Squires Way, North Wollongong, NSW 2500, Australia
[6] Hyundai Motor Co, Res & Dev Div, Battery Cell Dev Team 1, 150 Hyundaiyeonguso Ro, Hwaseong Si 18280, Gyeonggi Do, South Korea
[7] Sungkyunkwan Univ, Dept Nano Engn, Suwon, South Korea
[8] Sungkyunkwan Univ, SKKU Inst Energy Sci & Technol SIEST, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
关键词
Dry coating; CNT coating; High electrical conductivity; High-energy density; Lithium-ion battery; LI-ION; PERFORMANCE; ELECTRODES; SITU;
D O I
10.1016/j.susmat.2025.e01287
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The highly conductive carbon nanotubes (CNT) coating for the Ni-rich layered oxide cathode materials is proposed for use in lithium-ion batteries (LIBs). Unlike the conventional carbon coating method, a novel dry CNT coating technique onto the active material particle without heating is developed to avoid carbo-thermal reduction causing oxide deterioration by CO2 generation at high coating temperature. The shear stress of dry coating delivers sculpted short lengths of coating CNTs, which ensure high coating coverage as well as optimal electron transportation and distributions. Dry-tailored CNT coatings have multi-functions of mitigating surface degradation and improving electrical conductivity. With a small content of inactive conducting agents in the electrode, CNT-coated cathodes enhance cyclability and rate capability. Ni-rich LiNi0.89Co0.06Mn0.05O2 (NCM) powder with a small amount of CNT coating significantly improves electrochemical performance than that of conventional electrodes using the same amount of conductive additives such as super-C and CNT. The CNT coating on NCM also enables graphite (Gr||NCM) full cells to have a high specific energy density, which is improved from 284.7 to 308.7 Wh kg- 1, simultaneously achieving an excellent energy retention of 75.0 % after 250 cycles. This research offers an efficient dry coating technique for achieving high energy density in LIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The Formation, Detriment and Solution of Residual Lithium Compounds on Ni-Rich Layered Oxides in Lithium-Ion Batteries
    Chen, Anqi
    Wang, Kun
    Li, Jiaojiao
    Mao, Qinzhong
    Xiao, Zhen
    Zhu, Dongmin
    Wang, Guoguang
    Liao, Peng
    He, Jiarui
    You, Ya
    Xia, Yang
    FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08):
  • [22] Progress and Challenges of Ni-Rich Layered Cathodes for All-Solid-State Lithium Batteries
    Zheng, Haonan
    Peng, Shuang
    Liang, Suzhe
    Yang, Weiyou
    Chen, Chaoyi
    Wang, Changhong
    Yu, Ruizhi
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (16)
  • [23] Understanding the thermal runaway of ni-rich lithium-ion batteries
    Nguyen T.T.D.
    Abada S.
    Lecocq A.
    Bernard J.
    Petit M.
    Marlair G.
    Grugeon S.
    Laruelle S.
    World Electric Vehicle Journal, 2019, 10 (04):
  • [24] The origin of impedance rise in Ni-Rich positive electrodes for lithium-ion batteries
    Lee, Rung-Chuan
    Franklin, Joseph
    Tian, Chixia
    Nordlund, Dennis
    Doeff, Marca
    Kostecki, Robert
    JOURNAL OF POWER SOURCES, 2021, 498
  • [25] All-dry solid-phase synthesis of single-crystalline Ni-rich ternary cathodes for lithium-ion batteries
    Qin, Li
    Yu, Haifeng
    Jiang, Xin
    Chen, Ling
    Cheng, Qilin
    Jiang, Hao
    SCIENCE CHINA-MATERIALS, 2024, 67 (02) : 650 - 657
  • [26] A perspective on single-crystal layered oxide cathodes for lithium-ion batteries
    Langdon, Jayse
    Manthiram, Arumugam
    ENERGY STORAGE MATERIALS, 2021, 37 : 143 - 160
  • [27] Understanding Co roles towards developing Li-rich layered oxide cathodes for lithium-ion batteries
    Wang, Jun
    Cui, Zhengyuan
    Wang, Cong
    Liu, Yafei
    Chen, Yanbin
    SOLID STATE IONICS, 2022, 379
  • [28] A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries
    Song, Bohang
    Li, Wangda
    Yan, Pengfei
    Oh, Seung-Min
    Wang, Chong-Min
    Manthiram, Arumugam
    JOURNAL OF POWER SOURCES, 2016, 325 : 620 - 629
  • [30] Malonic-acid-functionalized fullerene enables the interfacial stabilization of Ni-rich cathodes in lithium-ion batteries
    Park, Chanhyun
    Lee, Eunryeol
    Kim, Su Hwan
    Han, Jung-Gu
    Hwang, Chihyun
    Joo, Se Hun
    Baek, Kyungeun
    Kang, Seok Ju
    Kwak, Sang Kyu
    Song, Hyun-Kon
    Choi, Nam-Soon
    JOURNAL OF POWER SOURCES, 2022, 521