NLSDeconv: an efficient cell-type deconvolution method for spatial transcriptomics data

被引:0
|
作者
Chen, Yunlu [1 ]
Ruan, Feng [1 ]
Wang, Ji-Ping [1 ]
机构
[1] Northwestern Univ, Dept Stat & Data Sci, 2006 Sheridan Rd, Evanston, IL 60208 USA
关键词
EXPRESSION;
D O I
10.1093/bioinformatics/btae747
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics (ST) allows gene expression profiling within intact tissue samples but lacks single-cell resolution. This necessitates computational deconvolution methods to estimate the contributions of distinct cell types. This article introduces NLSDeconv, a novel cell-type deconvolution method based on non-negative least squares, along with an accompanying Python package. Benchmarking against 18 existing deconvolution methods on various ST datasets demonstrates NLSDeconv's competitive statistical performance and superior computational efficiency.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Spatially informed cell-type deconvolution for spatial transcriptomics
    Ying Ma
    Xiang Zhou
    Nature Biotechnology, 2022, 40 (9) : 1349 - 1359
  • [2] Spatially informed cell-type deconvolution for spatial transcriptomics
    Ma, Ying
    Zhou, Xiang
    NATURE BIOTECHNOLOGY, 2022, 40 (09) : 1349 - +
  • [3] Robust Spatial Cell-Type Deconvolution with Qualitative Reference for Spatial Transcriptomics
    Dong, Qishi
    Yang, Yi
    Luo, Ziye
    Shen, Haipeng
    Shi, Xingjie
    Liu, Jin
    SMALL METHODS, 2025,
  • [4] SpatialDeX Is a Reference-Free Method for Cell-Type Deconvolution of Spatial Transcriptomics Data in Solid Tumors
    Liu, Xinyi
    Tang, Gongyu
    Chen, Yuhao
    Li, Yuanxiang
    Li, Hua
    Wang, Xiaowei
    CANCER RESEARCH, 2025, 85 (01) : 171 - 182
  • [5] SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
    Kyle Coleman
    Jian Hu
    Amelia Schroeder
    Edward B. Lee
    Mingyao Li
    Communications Biology, 6
  • [6] SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
    Coleman, Kyle
    Hu, Jian
    Schroeder, Amelia
    Lee, Edward B.
    Li, Mingyao
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [7] LETSmix: a spatially informed and learning-based domain adaptation method for cell-type deconvolution in spatial transcriptomics
    Zhan, Yangen
    Zhang, Yongbing
    Hu, Zheqi
    Wang, Yifeng
    Zhu, Zirui
    Du, Sijing
    Yan, Xiangming
    Li, Xiu
    GENOME MEDICINE, 2025, 17 (01):
  • [8] A comprehensive comparison on cell-type composition inference for spatial transcriptomics data
    Chen, Jiawen
    Liu, Weifang
    Luo, Tianyou
    Yu, Zhentao
    Jiang, Minzhi
    Wen, Jia
    Gupta, Gaorav P.
    Giusti, Paola
    Zhu, Hongtu
    Yang, Yuchen
    Li, Yun
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (04)
  • [9] Adjustment of scRNA-seq data to improve cell-type decomposition of spatial transcriptomics
    Wang, Lanying
    Hu, Yuxuan
    Gao, Lin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [10] Transcriptional output, cell-type densities, and normalization in spatial transcriptomics
    Saiselet, Manuel
    Rodrigues-Vitoria, Joel
    Tourneur, Adrien
    Craciun, Ligia
    Spinette, Alex
    Larsimont, Denis
    Andry, Guy
    Lundeberg, Joakim
    Maenhaut, Carine
    Detours, Vincent
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2020, 12 (11) : 906 - 908