Du Bois property of log centers

被引:0
作者
Kollar, Janos [1 ]
Kovacs, Sandor J. [2 ]
机构
[1] Princeton Univ, Dept Math, Fine Hall, Princeton, NJ 08544 USA
[2] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
关键词
SINGULARITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1195 / 1207
页数:13
相关论文
共 34 条
[1]  
Ambro F, 2003, Tr. Mat. Inst. Steklova, V240, P220
[2]   Existence of log canonical flips and a special LMMP [J].
Birkar, Caucher .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2012, (115) :325-368
[3]   A general extension theorem for cohomology classes on non reduced analytic subspaces [J].
Cao, JunYan ;
Demailly, Jean-Pierre ;
Matsumura, Shin-ichi .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (06) :949-962
[4]  
Demailly Dem12 Jean-Pierre, 2012, Surveys of Modern Mathematics, V1
[5]  
Demailly J.-P., 2016, ADV LECT MATH ALM, V35.1, P191
[6]   A sharp lower bound for the log canonical threshold [J].
Demailly, Jean-Pierre ;
Hoang Hiep Pham .
ACTA MATHEMATICA, 2014, 212 (01) :1-9
[7]  
Demailly Jean-Pierre, 2018, Springer Proc. Math. Stat., V246, P97
[8]  
Demailly JP, 2000, MICH MATH J, V48, P137
[9]   Semi-continuity of complex singularity exponents and Kahler-Einstein metrics on Fano orbifolds [J].
Demailly, JP ;
Kollár, J .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (04) :525-556
[10]  
DUBOIS P, 1981, B SOC MATH FR, V109, P41