High Strength-Ductility Synergy of As-Cast B2-Containing AlNbTaTiZr Refractory High-Entropy Alloy Under Intermediate and Dynamic Strain Rates

被引:3
作者
Naseer, Hashim [1 ]
Wang, Yangwei [1 ,2 ]
Khan, Muhammad Abubaker [3 ]
Brechtl, Jamieson [4 ]
Afifi, Mohamed A. [5 ,6 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Peoples R China
[3] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[4] Oak Ridge Natl Lab, Bldg & Transportat Sci Div, Oak Ridge, TN 37830 USA
[5] Nile Univ, Sch Engn & Appl Sci, Mech Engn Program, Giza 12677, Egypt
[6] Nile Univ, Smart Engn Syst Res Ctr SESC, Giza 12677, Egypt
关键词
refractory high-entropy alloy; hybrid BCC/B2 nanohybrid; ordered B2 structure; intermediate strain rate; dynamic impact loadings; PRINCIPAL ELEMENT ALLOYS; MECHANICAL-PROPERTIES; DEFORMATION-BEHAVIOR; COMPRESSIVE DEFORMATION; LOW-DENSITY; MICROSTRUCTURE;
D O I
10.3390/met15030249
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the mechanical behavior of materials under various strain-rate regimes is critical for many scientific and engineering applications. Accordingly, this study investigates the strain-rate-dependent compressive mechanical behavior of B2-containing (TiZrNb)(79.5)(TaAl)(20.5) refractory high-entropy alloy (RHEA) at room temperature. The RHEA is prepared by vacuum arc melting and is tested over intermediate (1.0 x 10(-1) s(-1), 1.0 s(-1)) and dynamic (1.0 x 10(3) s(-1), 2.0 x 10(3) s(-1), 2.8 x 10(3) s(-1), 3.2 x 10(3) s(-1), and 3.5 x 10(3) s(-1)) strain rates. The alloy characterized as hybrid body-centered-cubic (BCC)/B2 nanostructure reveals an exceptional yield strength (YS) of similar to 1437 MPa and a fracture strain exceeding 90% at an intermediate (1.0 s(-1)) strain rate. The YS increases to similar to 1797 MPa under dynamic strain-rate (3.2 x 10(3) s(-1)) loadings, which is a similar to 25 % improvement in strength compared with the deformation at the intermediate strain rate. Microstructural analysis of the deformed specimens reveals the severity of dislocation activity with strain and strain rate that evolves from fine dislocation bands to the formation of localized adiabatic shear bands (ASBs) at the strain rate 3.5 x 10(3) s(-1). Consequently, the RHEA fracture features mixed ductile-brittle morphology. Overall, the RHEA exhibits excellent strength-ductility synergy over a wide strain-rate domain. The study enhances understanding of the strain-rate-dependent mechanical behavior of B2-containing RHEA, which is significant for alloy processes and impact resistance applications.
引用
收藏
页数:13
相关论文
共 43 条
[21]   Designing a novel low-density, high-strength Al 12 Nb 25.5 Ta 8.5 Ti 27.5 Zr 26.5 refractory high-entropy alloy for medium-temperature applications [J].
Naseer, Hashim ;
Wang, Yangwei ;
Bao, Jiawei ;
Khan, Muhammad Abubaker ;
Afifi, Mohamed A. .
MATERIALS CHARACTERIZATION, 2025, 219
[22]   Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J].
Park, Jeong Min ;
Moon, Jongun ;
Bae, Jae Wung ;
Jang, Min Ji ;
Park, Jaeyeong ;
Lee, Sunghak ;
Kim, Hyoung Seop .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 719 :155-163
[23]   Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy [J].
Ren, Kerong ;
Liu, Hongyang ;
Chen, Rong ;
Tang, Yu ;
Guo, Baoyue ;
Li, Shun ;
Wang, Jie ;
Wang, Ruixin ;
Lu, Fangyun .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 827
[24]   Nanocrystalline refractory metals for extreme condition applications [J].
Schuster, B. E. ;
Ligda, J. P. ;
Pan, Z. L. ;
Wei, Q. .
JOM, 2011, 63 (12) :27-31
[25]   Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 [J].
Senkov, O. N. ;
Couzinie, J-P ;
Rao, S., I ;
Soni, V ;
Banerjee, R. .
MATERIALIA, 2020, 9
[26]   Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis [J].
Senkov, O. N. ;
Senkova, S. V. ;
Woodward, C. ;
Miracle, D. B. .
ACTA MATERIALIA, 2013, 61 (05) :1545-1557
[27]   Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J].
Senkov, O. N. ;
Scott, J. M. ;
Senkova, S. V. ;
Miracle, D. B. ;
Woodward, C. F. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (20) :6043-6048
[28]   Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J].
Senkov, O. N. ;
Wilks, G. B. ;
Scott, J. M. ;
Miracle, D. B. .
INTERMETALLICS, 2011, 19 (05) :698-706
[29]   Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy [J].
Song, Hyejin ;
Kim, Dong Geun ;
Kim, Dae Woong ;
Jo, Min Cheol ;
Jo, Yong Hee ;
Kim, Wooyeol ;
Kim, Hyoung Seop ;
Lee, Byeong-Joo ;
Lee, Sunghak .
SCIENTIFIC REPORTS, 2019, 9 (1)
[30]   Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy [J].
Soni, V. ;
Senkov, O. N. ;
Gwalani, B. ;
Miracle, D. B. ;
Banerjee, R. .
SCIENTIFIC REPORTS, 2018, 8