Multi-scale cascaded attention network for underwater image enhancement

被引:0
作者
Zhao, Gaoli [1 ]
Wu, Yuheng [1 ]
Zhou, Ling [2 ]
Zhao, Wenyi [3 ]
Zhang, Weidong [2 ,4 ]
机构
[1] Henan Inst Sci & Technol, Sch Comp & Technol, Xinxiang, Peoples R China
[2] Henan Inst Sci & Technol, Sch Informat Engn, Xinxiang, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing, Peoples R China
[4] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou, Peoples R China
基金
中国博士后科学基金;
关键词
underwater image enhancement; cascaded attention network; multi-scale feature integration; computer vision; deep learning;
D O I
10.3389/fmars.2025.1555128
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The complexity of underwater environments combined with light attenuation and scattering in water often leads to quality degradation in underwater images, including color distortion and blurred details. To eliminate obstacles in underwater imaging, we propose an underwater image enhancement method based on a cascaded attention network called MSCA-Net. Specifically, this method designs an attention-guided module that connects channel and pixel attention in both serial and parallel ways to simultaneously achieve channel feature refinement and feature representation enhancement. Afterward, we propose a multi-scale feature integration module to capture information and details at different scales within the image. Meanwhile, residual connections are introduced to assist in deep feature learning via acquiring more detailed information from shallow features. We conducted extensive experiments on various underwater datasets, and the results demonstrate that our method still holds an advantage when compared to the latest underwater image enhancement methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multi-scale Underwater Image Enhancement Network Based on Attention Mechanism
    Fang Ming
    Liu Xiaohan
    Fu Feiran
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (12) : 3513 - 3521
  • [2] Multi-scale network with attention mechanism for underwater image enhancement
    Tao, Ye
    Tang, Jinhui
    Zhao, Xinwei
    Zhou, Chen
    Wang, Chong
    Zhao, Zhonglei
    NEUROCOMPUTING, 2024, 595
  • [3] Msap: multi-scale attention probabilistic network for underwater image enhancement network
    Chang, Baocai
    Li, Jinjiang
    Wang, Haiyang
    Li, Mengjun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 653 - 661
  • [4] Incorporating Triple Attention and Multi-scale Pyramid Network for Underwater Image Enhancement
    Sun, Kaichuan
    Tian, Yubo
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (03) : 387 - 397
  • [5] Multi-scale Attention Conditional GAN for Underwater Image Enhancement
    Li, Yiming
    Li, Fei
    Li, Zhenbo
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 463 - 475
  • [6] Generative adversarial networks with multi-scale and attention mechanisms for underwater image enhancement
    Wang, Ziyang
    Zhao, Liquan
    Zhong, Tie
    Jia, Yanfei
    Cui, Ying
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [7] Transformer-based Multi-scale Underwater Image Enhancement Network
    Yang, Ai-Ping
    Fang, Si-Jie
    Shao, Ming-Fu
    Zhang, Teng-Fei
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (12): : 1696 - 1705
  • [8] Underwater image enhancement synthesizing multi-scale information and attention mechanisms
    Xia X.
    Zhong Y.
    Hu P.
    Yao Y.
    Geng J.
    Zhang L.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (10): : 1582 - 1594
  • [9] Autonomous underwater robot for underwater image enhancement via multi-scale deformable convolution network with attention mechanism
    Lin, Yi
    Zhou, Jingchun
    Ren, Wenqi
    Zhang, Weishi
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [10] A Multi-scale feature modulation network for efficient underwater image enhancement
    Zheng, Shijian
    Wang, Rujing
    Zheng, Shitao
    Wang, Fenmei
    Wang, Liusan
    Liu, Zhigui
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)