Predictive value of machine learning model based on CT values for urinary tract infection stones

被引:0
作者
Li, Jiaxin [1 ]
Du, Yao [2 ]
Huang, Gaoming [1 ]
Zhang, Chiyu
Ye, Zhenfeng
Zhong, Jinghui [1 ,3 ]
Xi, Xiaoqing [1 ]
Huang, Yawei [1 ]
机构
[1] Nanchang Univ, Affiliated Hosp 2, Jiangxi Med Coll, Dept Urol, Nanchang 330006, Peoples R China
[2] Nanchang Univ, Affiliated Hosp 2, Jiangxi Med Coll, Dept Cardiovasc Med, Nanchang 330006, Peoples R China
[3] Univ Sci & Technol China, Affiliated Hosp USTC 1, Ctr Leading Med & Adv Technol IHM, Dept Neurol,Div Life Sci & Med, Hefei 230001, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
POPULATION; MANAGEMENT; REMOVAL; RISK;
D O I
10.1016/j.isci.2024.110843
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preoperative diagnosis of infection stones presents a significant clinical challenge. We developed a machine learning model to predict urinary infection stones using computed tomography (CT) values, enabling in vivo preoperative identification. In this study, we included 1209 patients who underwent urinary lithotripsy at our hospital. Seven machine learning algorithms along with eleven preoperative variables were used to construct the prediction model. Subsequently, model performance was evaluated by calculating AUC and AUPR for subjects in the validation set. On the validation set, all seven machine learning models demonstrated strong discrimination (AUC: 0.687-0.947). Additionally, the XGBoost model was identified as the optimal model significantly outperforming the traditional LR model. Taken together, the XGBoost model is the first machine learning model for preoperative prediction of infection stones based on CT values. It can rapidly and accurately identify infection stones in vitro, providing valuable guidance for urologists in managing these stones.
引用
收藏
页数:14
相关论文
共 43 条
  • [11] Voxel-based Gaussian naive Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans
    Griffis, Joseph C.
    Allendorfer, Jane B.
    Szaflarski, Jerzy P.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2016, 257 : 97 - 108
  • [12] GRIFFITH DP, 1991, EUR UROL, V20, P243
  • [13] Urinary tract infections and post-operative fever in percutaneous nephrolithotomy
    Gutierrez, Jorge
    Smith, Arthur
    Geavlete, Petrisor
    Shah, Hemendra
    Kural, Ali Riza
    de Sio, Marco
    Amon Sesmero, Jose H.
    Hoznek, Andras
    de la Rosette, Jean
    [J]. WORLD JOURNAL OF UROLOGY, 2013, 31 (05) : 1135 - 1140
  • [14] Ureteroscopy: Current practice and long-term complications
    Harmon, WJ
    Sershon, PD
    Blute, ML
    Patterson, DE
    Segura, JW
    [J]. JOURNAL OF UROLOGY, 1997, 157 (01) : 28 - 32
  • [15] Contemporary Management of Struvite Stones Using Combined Endourologic and Medical Treatment: Predictors of Unfavorable Clinical Outcome
    Iqbal, Muhammad Waqas
    Youssef, Ramy F.
    Neisius, Andreas
    Kuntz, Nicholas
    Hanna, Jonathan
    Ferrandino, Michael N.
    Preminger, Glenn M.
    Lipkin, Michael E.
    [J]. JOURNAL OF ENDOUROLOGY, 2016, 30 (07) : 771 - 777
  • [16] Kalafi EY, 2019, FOLIA BIOL-PRAGUE, V65, P212
  • [17] Urolithiasis Through the Ages: Data on More Than 200,000 Urinary Stone Analyses
    Knoll, Thomas
    Schubert, Anne B.
    Fahlenkamp, Dirk
    Leusmann, Dietrich B.
    Wendt-Nordahl, Gunnar
    Schubert, Gernot
    [J]. JOURNAL OF UROLOGY, 2011, 185 (04) : 1304 - 1311
  • [18] Risk factors for postoperative infectious complications following percutaneous nephrolithotomy: a prospective clinical study
    Koras, Omer
    Bozkurt, Ibrahim Halil
    Yonguc, Tarik
    Degirmenci, Tansu
    Arslan, Burak
    Gunlusoy, Bulent
    Aydogdu, Ozgu
    Minareci, Suleyman
    [J]. UROLITHIASIS, 2015, 43 (01) : 55 - 60
  • [19] Determination of Renal Stone Composition in Phantom and Patients Using Single-Source Dual-Energy Computed Tomography
    Kulkarni, Naveen M.
    Eisner, Brian H.
    Pinho, Daniella F.
    Joshi, Mukta C.
    Kambadakone, Avinash R.
    Sahani, Dushyant V.
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2013, 37 (01) : 37 - 45
  • [20] Diabetes mellitus and the risk of urinary tract stones: A population-based case-control study
    Lieske, John C.
    de la Vega, Lourdes S. Pena
    Gettman, Matthew T.
    Slezak, Jeffrey M.
    Bergstralh, Eric J.
    Melton, Joseph, III
    Leibson, Cynthia L.
    [J]. AMERICAN JOURNAL OF KIDNEY DISEASES, 2006, 48 (06) : 897 - 904