Intrusion Detection for Wireless Sensor Network Using Particle Swarm Optimization Based Explainable Ensemble Machine Learning Approach

被引:1
|
作者
Birahim, Shaikh Afnan [1 ]
Paul, Avijit [2 ]
Rahman, Fahmida [3 ]
Islam, Yamina [3 ]
Roy, Tonmoy [4 ]
Hasan, Mohammad Asif [2 ]
Haque, Fariha [2 ]
Chowdhury, Muhammad E. H. [5 ]
机构
[1] Univ Glasgow, Sch Comp Sci & Engn, Glasgow G12 8QQ, Scotland
[2] Rajshahi Univ Engn & Technol, Dept Elect & Telecommun Engn, Rajshahi 6204, Bangladesh
[3] Int Islamic Univ Chittagong, Dept Comp Sci & Engn, Chittagong 4318, Bangladesh
[4] Utah State Univ, Dept Data Analyt & Informat Syst, Logan, UT 84322 USA
[5] Qatar Univ, Dept Elect Engn, Doha, Qatar
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Intrusion detection system; wireless sensor networks; particle swarm optimization; ensemble machine learning; explainable AI; streamlit web application; SMOTE;
D O I
10.1109/ACCESS.2025.3528341
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wireless Sensor Networks (WSN) play a pivotal role in various domains, including monitoring, security, and data transmission. However, their susceptibility to intrusions poses a significant challenge. This paper proposes a novel Intrusion Detection System (IDS) leveraging Particle Swarm Optimization (PSO) and an ensemble machine learning approach combining Random Forest (RF), Decision Tree (DT), and K-Nearest Neighbors (KNN) models to enhance the accuracy and reliability of intrusion detection in WSNs. The system addresses key challenges such as the imbalanced nature of datasets and the evolving complexity of network attacks. By incorporating Synthetic Minority Oversampling Technique Tomek (SMOTE-Tomek) techniques to balance the dataset and employing explainable AI methods such as Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), the proposed model achieves significant improvements in detection accuracy, precision, recall, and F1 score while providing clear, interpretable results. Extensive experimentation on WSN-DS dataset demonstrates the system's efficacy, achieving an accuracy of 99.73%, with precision, recall, and F1 score values of 99.72% each, outperforming existing approaches. This work offers a robust, scalable solution for securing WSNs, contributing to both academic research and practical applications.
引用
收藏
页码:13711 / 13730
页数:20
相关论文
共 50 条
  • [1] A hybrid Particle swarm optimization -Extreme Learning Machine approach for Intrusion Detection System
    Ali, Mohammed Hasan
    Fadlizolkipi, Mohamad
    Firdaus, Ahmad
    Khidzir, Nik Zulkarnaen
    2018 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2018,
  • [2] A New Intrusion Detection System Based on Fast Learning Network and Particle Swarm Optimization
    Ali, Mohammed Hasan
    Al Mohammed, Bahaa Abbas Dawood
    Ismail, Alyani
    Zolkipli, Mohamad Fadli
    IEEE ACCESS, 2018, 6 : 20255 - 20261
  • [3] Anomaly-based Network Intrusion Detection using Ensemble Machine Learning Approach
    Das, Abhijit
    Pramod
    Sunitha, B. S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (02) : 635 - 645
  • [4] Particle swarm optimization using elite opposition-based learning and application in wireless sensor network
    Zhao, Jia
    Lv, Li
    Fan, Tanghuai
    Wang, Hui
    Li, Chongxia
    Fu, Ping
    Sensor Letters, 2014, 12 (02) : 404 - 408
  • [5] A Network Intrusion Detection System Using Ensemble Machine Learning
    Kiflay, Aklil Zenebe
    Tsokanos, Athanasios
    Kirner, Raimund
    2021 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2021,
  • [6] Cluster Routing Algorithm for Ring Based Wireless Sensor Network Using Particle Swarm and Lion Swarm Optimization
    Huangshui Hu
    Yuxin Guo
    Jinfeng Zhang
    Chunhua Yin
    Dong Gao
    Wireless Personal Communications, 2023, 128 : 1631 - 1650
  • [7] Cluster Routing Algorithm for Ring Based Wireless Sensor Network Using Particle Swarm and Lion Swarm Optimization
    Hu, Huangshui
    Guo, Yuxin
    Zhang, Jinfeng
    Yin, Chunhua
    Gao, Dong
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 128 (03) : 1631 - 1650
  • [8] Target Classification in Wireless Sensor Network Using Particle Swarm Optimization (PSO)
    Gharaibeh, Khaled M.
    Yaqot, Abdullah
    2012 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS 2012), 2012, : 146 - 150
  • [9] Multi-swarm particle swarm optimization using opposition-based learning and application in coverage optimization of wireless sensor network
    Lv, Li
    Wang, Huibin
    Li, Xiaofang
    Xiao, Xianjian
    Zhang, Lili
    Sensor Letters, 2014, 12 (02) : 386 - 391
  • [10] Feature Selection Using Particle Swarm Optimization and Ensemble-Based Machine Learning Models for Ransomware Detection
    Neel Kumar Yadav Gurukala
    Deepak Kumar Verma
    SN Computer Science, 5 (8)