A New Kiwi Fruit Detection Algorithm Based on an Improved Lightweight Network

被引:1
|
作者
Yang, Yi [1 ,2 ]
Su, Lijun [1 ]
Zong, Aying [1 ]
Tao, Wanghai [1 ]
Xu, Xiaoping [1 ]
Chai, Yixin [1 ]
Mu, Weiyi [1 ]
机构
[1] Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg, Xian 710048, Peoples R China
[2] Anhui Agr Univ, Sch Hort, Hefei 230036, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 10期
关键词
deep learning; YOLOv4-tiny algorithm; object detection; data augmentation; squeeze-and-excitation networks;
D O I
10.3390/agriculture14101823
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To address the challenges associated with kiwi fruit detection methods, such as low average accuracy, inaccurate recognition of fruits, and long recognition time, this study proposes a novel kiwi fruit recognition method based on an improved lightweight network S-YOLOv4-tiny detection algorithm. Firstly, the YOLOv4-tiny algorithm utilizes the CSPdarknet53-tiny network as a backbone feature extraction network, replacing the CSPdarknet53 network in the YOLOv4 algorithm to enhance the speed of kiwi fruit recognition. Additionally, a squeeze-and-excitation network has been incorporated into the S-YOLOv4-tiny detection algorithm to improve accurate image extraction of kiwi fruit characteristics. Finally, enhancing dataset pictures using mosaic methods has improved precision in the characteristic recognition of kiwi fruits. The experimental results demonstrate that the recognition and positioning of kiwi fruits have yielded improved outcomes. The mean average precision (mAP) stands at 89.75%, with a detection precision of 93.96% and a single-picture detection time of 8.50 ms. Compared to the YOLOv4-tiny detection algorithm network, the network in this study exhibits a 7.07% increase in mean average precision and a 1.16% acceleration in detection time. Furthermore, an enhancement method based on the Squeeze-and-Excitation Network (SENet) is proposed, as opposed to the convolutional block attention module (CBAM) and efficient channel attention (ECA). This approach effectively addresses issues related to slow training speed and low recognition accuracy of kiwi fruit, offering valuable technical insights for efficient mechanical picking methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Improved Lightweight Semantic Segmentation Algorithm Based on DeepLabv3+ Network
    Yao Yan
    Hu Likun
    Guo Jun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [42] A Real-Time Semantic Segmentation Algorithm Based on Improved Lightweight Network
    Liu, Cheng
    Gao, Hongxia
    Chen, An
    2020 INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS), 2020, : 249 - 253
  • [43] YOLOV8-MR: An Improved Lightweight YOLOv8 Algorithm for Tomato Fruit Detection
    Li, Xu
    Cai, Changhan
    Yang, Yue
    Song, Bo
    IEEE ACCESS, 2025, 13 : 48120 - 48131
  • [44] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [45] Lightweight mask detection algorithm based on improved YOLOv4-tiny
    Zhu Jie
    Wang Jian-li
    Wang Bin
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (11) : 1525 - 1534
  • [46] A lightweight rice pest detection algorithm based on improved YOLOv8
    Zheng, Yong
    Zheng, Weiheng
    Du, Xia
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Xinpeng Yuan
    Zhibo Fu
    Bowen Zhang
    Zhengkun Xie
    Rui Gan
    Scientific Reports, 14
  • [48] Lightweight tomato ripeness detection algorithm based on the improved RT-DETR
    Wang, Sen
    Jiang, Huiping
    Yang, Jixiang
    Ma, Xuan
    Chen, Jiamin
    Li, Zhongjie
    Tang, Xingqun
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [49] An Improved YOLOv5-Based Lightweight Submarine Target Detection Algorithm
    Mei, Likun
    Chen, Zhili
    SENSORS, 2023, 23 (24)
  • [50] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Yuan, Xinpeng
    Fu, Zhibo
    Zhang, Bowen
    Xie, Zhengkun
    Gan, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01)