DETERMINATION OF A SOURCE TERM IN SCHRO<spacing diaeresis>DINGER EQUATION WITH DATA TAKEN AT FINAL MOMENT OF OBSERVATION

被引:3
作者
Imanuvilov, Oleg [1 ]
Yamamoto, Masahiro [2 ,3 ,4 ]
机构
[1] Colorado State Univ, Dept Math, 101 Weber Bldg, Ft Collins, CO 80523 USA
[2] Univ Tokyo, Grad Sch Math Sci, Meguro, Tokyo 1538914, Japan
[3] Acad Romanian Scientists, Ilfov 3, Bucharest, Romania
[4] Acad Peloritana Pericolanti, Messina, Italy
来源
COMMUNICATIONS ON ANALYSIS AND COMPUTATION | 2024年 / 2卷 / 04期
关键词
Schro<spacing diaeresis>diner equation; inverse problems; Carleman estimate; uniqueness; stability; LIPSCHITZ STABILITY; INVERSE PROBLEM; UNIQUENESS;
D O I
10.3934/cac.2024016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Lipschitz stability estimates in the inverse problems of determining a real-valued source term or a real-valued potential of a Schro<spacing diaeresis>dinger equation with time-dependent coefficients under some geometric assumption on observation subboundary. The arguments are based on a Carleman estimate with the weight which decays at t = 0.
引用
收藏
页码:316 / 342
页数:27
相关论文
共 17 条
[1]   Uniqueness and stability in an inverse problem for the Schrodinger equation (vol 18, pg 1537, 2002) [J].
Baudouin, L. ;
Puel, J-P .
INVERSE PROBLEMS, 2007, 23 (03) :1327-1328
[2]   Uniqueness and stability in an inverse problem for the Schrodinger equation [J].
Baudouin, L ;
Puel, JP .
INVERSE PROBLEMS, 2002, 18 (06) :1537-1554
[3]   An inverse problem for Schrodinger equations with discontinuous main coefficient [J].
Baudouin, Lucie ;
Mercado, Alberto .
APPLICABLE ANALYSIS, 2008, 87 (10-11) :1145-1165
[4]  
Beilina L., 2012, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, DOI DOI 10.1007/978-1-4419-7805-9
[5]  
Bukhgeim A., 2000, Introduction to the Theory of Inverse Problems
[6]  
BUKHGEIM AL, 1981, DOKL AKAD NAUK SSSR+, V260, P269
[7]   CONTROLLABILITY OF PARABOLIC EQUATIONS [J].
EMANUILOV, OY .
SBORNIK MATHEMATICS, 1995, 186 (5-6) :879-900
[8]  
Hormander L., 1976, LINEAR PARTIAL DIFFE
[9]   Carleman estimate for the Schrodinger equation and application to magnetic inverse problems [J].
Huang, Xinchi ;
Kian, Yavar ;
Soccorsi, Eric ;
Yamamoto, Masahiro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) :116-142
[10]   Sharp uniqueness and stability of solution for an inverse source problem for the Schrodinger equation [J].
Imanuvilov, O. Y. ;
Yamamoto, M. .
INVERSE PROBLEMS, 2023, 39 (10)