The local well-posedness of analytic solution to the boundary layer system for compressible flow in three dimensions

被引:0
作者
Chen, Yufeng [1 ]
Ruan, Lizhi [1 ]
Yang, Anita [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Key Lab NAA MOE & Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
Boundary layer equations; Compressible flow; Local well-posedness; Real-analyticity; Algebraic weight; PRANDTL EQUATIONS; ILL-POSEDNESS; GLOBAL EXISTENCE; SPACE; UNIQUENESS; STABILITY; EULER; LIMIT;
D O I
10.1016/j.jde.2025.02.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider three dimensional boundary layer equations for compressible isentropic flow with no-slip boundary condition. The local well-posedness of the compressible boundary layer system is established when the initial datum is real-analytic in the tangential direction and has Sobolev regularity in the normal direction. The proof is based on the introduction of a change of variables to eliminate the linear growth in normal direction and subtle energy estimates with algebraic weights. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:716 / 746
页数:31
相关论文
共 35 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
Caflisch RE, 2000, Z ANGEW MATH MECH, V80, P733, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO
[3]  
2-L
[4]   Well-posedness of Prandtl equations with non-compatible data [J].
Cannone, M. ;
Lombardo, M. C. ;
Sammartino, M. .
NONLINEARITY, 2013, 26 (12) :3077-3100
[5]   Existence and uniqueness for the Prandtl equations [J].
Cannone, M ;
Lombardo, MC ;
Sammartino, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (03) :277-282
[6]   Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities [J].
Byun, Sun-Sig ;
Kumar, Deepak ;
Lee, Ho-Sik .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 405 (03)
[7]   Well-Posedness of the Prandtl Equations Without Any Structural Assumption [J].
Dietert, Helge ;
Gerard-Varet, David .
ANNALS OF PDE, 2019, 5 (01)
[8]   Local well-posedness of solutions to the boundary layer equations for 2D compressible flow [J].
Fan, Long ;
Ruan, Lizhi ;
Yang, Anita .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
[9]   Remarks on the ill-posedness of the Prandtl equation [J].
Gerard-Varet, D. ;
Nguyen, T. .
ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) :71-88
[10]  
Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273