Large random intersection graphs inside the critical window and triangle counts

被引:0
作者
Wang, Minmin [1 ]
机构
[1] Univ Sussex, Brighton, England
基金
英国工程与自然科学研究理事会;
关键词
random intersection graph; random bipartite graph; scaling limit; clustering; RANDOM TREES;
D O I
10.1214/25-EJP1271
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We identify the scaling limit of random intersection graphs inside their critical windows. The limit graphs vary according to the clustering regimes, and coincide with the continuum Erdos-R & eacute;nyi graph in two out of the three regimes. Our approach to the scaling limit relies upon the close connection of random intersection graphs with binomial bipartite graphs, as well as a graph exploration algorithm on the latter. This further allows us to prove limit theorems for the number of triangles in the large connected components of the random intersection graphs.
引用
收藏
页数:64
相关论文
共 26 条
[1]   The continuum limit of critical random graphs [J].
Addario-Berry, L. ;
Broutin, N. ;
Goldschmidt, C. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) :367-406
[2]  
Aldous D, 1997, ANN PROBAB, V25, P812
[3]   EPIDEMICS ON RANDOM INTERSECTION GRAPHS [J].
Ball, Frank G. ;
Sirl, David J. ;
Trapman, Pieter .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (03) :1081-1128
[4]  
Behrisch M, 2007, ELECTRON J COMB, V14
[5]   Universality for critical heavy-tailed network models: Metric structure of maximal components [J].
Bhamidi, Shankar ;
Dhara, Souvik ;
van der Hofstad, Remco ;
Sen, Sanchayan .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
[6]   The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs [J].
Bhamidi, Shankar ;
van der Hofstad, Remco ;
Sen, Sanchayan .
PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (1-2) :387-474
[7]   Phase transitions for detecting latent geometry in random graphs [J].
Brennan, Matthew ;
Bresler, Guy ;
Nagaraj, Dheeraj .
PROBABILITY THEORY AND RELATED FIELDS, 2020, 178 (3-4) :1215-1289
[8]   LIMITS OF MULTIPLICATIVE INHOMOGENEOUS RANDOM GRAPHS AND LEVY TREES: THE CONTINUUM GRAPHS [J].
Broutin, Nicolas ;
Duquesne, Thomas ;
Wang, Minmin .
ANNALS OF APPLIED PROBABILITY, 2022, 32 (04) :2448-2503
[9]   Limits of multiplicative inhomogeneous random graphs and Levy trees: limit theorems [J].
Broutin, Nicolas ;
Duquesne, Thomas ;
Wang, Minmin .
PROBABILITY THEORY AND RELATED FIELDS, 2021, 181 (04) :865-973
[10]  
Cam L.L., 1960, Pac. J. Math, V10, P1181, DOI DOI 10.2140/PJM.1960.10.1181