Effect of magnetic field on the thermal and hydraulic behavior of biological hybrid nanofluid flow in curved microchannels

被引:0
作者
Gharehkhani, M. [1 ]
Dinarvand, S. [2 ]
Hajmohammadi, M. R. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran 1591634311, Iran
[2] Islamic Azad Univ, Dept Mech Engn, Cent Tehran Branch, Tehran, Iran
关键词
Magnetic field; Bio-hybrid nanofluids; Magnetic control; Microchannel curvature; TRACHEOBRONCHIAL AIRWAYS; ENTROPY GENERATION; DRUG-DELIVERY; BLOOD-FLOW; CONVECTION; FLUID; NANOPARTICLES; SIMULATION; CU/BLOOD; CARRIER;
D O I
10.1007/s10973-024-13852-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
Active flow control offers promising solutions for enhancing the performance of microfluidics. Magnetic fields can affect micro-scale devices' heat transfer characteristics and flow shape, affecting system performance and reliability. Curved channels are key components of thermal and biomedical systems and are crucial for integrating and miniaturizing microsystems. With this point of view, this numerical study investigates the simultaneous effects of curvature and magnetic field on the thermo-hydraulic behavior of microchannels in engineering and medical applications. Several local and average parameters were examined to evaluate the volumetric and surface behavior of the bio-hybrid nanofluid (Cu + CuO/Blood) in the studied microchannels. Numerical results show that if a magnetic field is placed in a specific direction and with particular strength in the curved microchannel, the resulting magnetic force can eliminate the effects of curvature, including the secondary flow. Therefore, the surface and volumetric parameters of flow and heat transfer, including the heat transfer coefficient, friction coefficient, and pressure drop, become similar to those of the flow in a straight microchannel. At Reynolds number (Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re$$\end{document}) 450, the heat transfer coefficient in circular and curved microchannels without a magnetic field deviates by 113.8% and 87.1%, respectively, compared to a straight microchannel. Increasing the Hartmann number (Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}) up to 30 can reduce the maximum deviation of microchannels to about 1%. Therefore, the values of the corresponding parameters eventually converge and show good agreement by reaching a critical Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}. Overall, this study underscores the potential of passive control of unwanted mixing in microfluidics devices.
引用
收藏
页码:3559 / 3575
页数:17
相关论文
共 50 条
[11]   Magnetic field effect on a fractionalized blood flow model in the presence of magnetic particles and thermal radiations [J].
Tabi, C. B. ;
Ndjawa, P. A. Y. ;
Motsumi, T. G. ;
Bansi, C. D. K. ;
Kofane, T. C. .
CHAOS SOLITONS & FRACTALS, 2020, 131
[12]   Interaction of magnetic field in flow of Maxwell nanofluid with convective effect [J].
Hayat, T. ;
Muhammad, Taseer ;
Shehzad, S. A. ;
Chen, G. Q. ;
Abbas, Ibrahim A. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 389 :48-55
[13]   On analysis of Blasius and Rayleigh-Stokes hybrid nanofluid flow under aligned magnetic field [J].
Kumar, K. Ganesh ;
Lokesh, H. J. ;
Shehzad, Sabir A. ;
Ambreen, Tehmina .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (03) :2119-2127
[14]   Studying flow and heat transfer characteristics of magnetic nanofluid under the effect of magnetic field using Euler-Lagrange approach [J].
Bahiraei, Mehdi ;
Hangi, Morteza .
INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2014, 46 (03) :555-567
[15]   On squeezing flow of nanofluid in the presence of magnetic field effects [J].
Hayat, T. ;
Muhammad, Taseer ;
Qayyum, A. ;
Alsaedi, A. ;
Mustafa, M. .
JOURNAL OF MOLECULAR LIQUIDS, 2016, 213 :179-185
[16]   Effect of Magnetic Field on Blood Flow [J].
Shit, G. C. ;
Majee, Sreeparna .
EMAGRES, 2020, 9 (01) :49-69
[17]   Field-synergy analysis of viscous dissipative nanofluid flow in microchannels [J].
Ting, Tiew Wei ;
Hung, Yew Mun ;
Guo, Ningqun .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 73 :483-491
[18]   Inspiration of Induced Magnetic Field on a Blood Flow of Prandtl Nanofluid Model with Stenosis [J].
Nadeem, S. ;
Ijaz, Shagufta ;
Sadiq, M. Adil .
CURRENT NANOSCIENCE, 2014, 10 (05) :753-765
[19]   IMPACT OF MAGNETIC FIELD IN RADIATIVE FLOW OF CASSON NANOFLUID WITH HEAT AND MASS FLUXES [J].
Hussain, Tariq ;
Hussain, Shafqat ;
Hayat, Tasawar .
THERMAL SCIENCE, 2018, 22 (01) :137-145
[20]   Entropy generation analysis in MHD hybrid nanofluid flow: Effect of thermal radiation and chemical reaction [J].
Vijay, Neha ;
Sharma, Kushal .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2023, 84 (01) :66-82